
SimEvents®

User's Guide

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

SimEvents® User's Guide
© COPYRIGHT 2005–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
November 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 Online only Revised for Version 1.1 (Release 2006a)
September 2006 Online only Revised for Version 1.2 (Release 2006b)
March 2007 Online only Revised for Version 2.0 (Release 2007a)
September 2007 Online only Revised for Version 2.1 (Release 2007b)
March 2008 Online only Revised for Version 2.2 (Release 2008a)
October 2008 Online only Revised for Version 2.3 (Release 2008b)
March 2009 Online only Revised for Version 2.4 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.1.1 (Release 2010b)
April 2011 Online only Revised for Version 3.1.2 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.2 (Release 2012b)
March 2013 Online only Revised for Version 4.3 (Release 2013a)
September 2013 Online only Revised for Version 4.3.1 (Release 2013b)
March 2014 Online only Revised for Version 4.3.2 (Release 2014a)
October 2014 Online only Revised for Version 4.3.3 (Release 2014b)
March 2015 Online only Revised for Version 4.4 (Release 2015a)
September 2015 Online only Revised for Version 4.4.1 (Release 2015b)
March 2016 Online only Revised for Version 5.0 (Release 2016a)
September 2016 Online only Revised for Version 5.1 (Release 2016b)
March 2017 Online only Revised for Version 5.2 (Release 2017a)
September 2017 Online only Revised for Version 5.3 (Release 2017b)

Working with Entities
1

Entity Types . 1-2
Entity Data Type Support . 1-3

Events and Event Actions . 1-5
Create Event Actions . 1-5

Event Action Languages . 1-8
Guidelines for Using MATLAB as the Event Action

Language . 1-8
Parameters in Event Actions . 1-9

Generate Entities When Events Occur 1-11
Generate Entity When First Entity is Destroyed 1-11
Generate Event-Based Entities Using Data Sets 1-13

Run Computations on Events . 1-14

Specify Intergeneration Times for Entities 1-15
Determine Intergeneration Time . 1-15

Generate Multiple Entities at Time Zero 1-22

Count Simultaneous Departures from a Server 1-25

Working with Entity Attributes . 1-28
Attach Attributes . 1-28
Set Attributes . 1-28

Manipulate Entity Attributes . 1-31
Write Functions to Manipulate Attributes 1-31

v

Contents

Inspect Structures of Entities . 1-35
Display Entity Types . 1-35
Inspect Entities at Run Time . 1-36

Combine Entities . 1-38

Replicate Entities on Multiple Paths 1-39
Modeling Notes . 1-39

Measure Point-to-Point Delays . 1-41
Basic Example Using Timer Blocks . 1-41

Attribute Value Support . 1-46

Modeling Queues and Servers
2

Model Basic Queuing Systems . 2-2
Example of a Logical Queue . 2-2
Vary the Service Time of a Server . 2-2

Sort by Priority . 2-6
Behavior of Priority Mode of Entity Queue Block 2-6
Serve Preferred Customers First . 2-6

Task Preemption in a Multitasking Processor 2-8

Determine Whether a Queue Is Nonempty 2-11

Model Server Failure . 2-12
Server States . 2-12
Use a Gate to Implement a Failure State 2-12

vi Contents

Routing Techniques
3

Role of Paths in SimEvents Models . 3-2
Definition of Entity Paths . 3-2
Implications of Entity Paths . 3-2
Overview Blocks for Designing Paths 3-2

Select Departure Path Using Entity Output Switch 3-5
Role of the Entity Output Switch . 3-5
Sample Use Cases . 3-5
Select the First Available Server . 3-6
Use an Attribute to Select an Output Port 3-6

Select Arrival Path Using Entity Input Switch 3-8
Role of the Input Switch . 3-8
Round-Robin Approach to Choosing Inputs 3-8

Combine Entity Paths . 3-10
Using Entity Input Switch to Combine Paths 3-10
Sequence Simultaneous Pending Arrivals 3-10

Use Messages To Route Entities . 3-12
Control Output Switch with a Message 3-12
Specify an Initial Port Selection . 3-13

Use Attributes to Route Entities . 3-15

Role of Gates in SimEvents Models . 3-16
Overview of Gate Behavior . 3-16
Gate Behavior . 3-17

Enable a Gate for a Time Interval . 3-18
Behavior of Entity Gate Block in Enabled Mode 3-18
Sense an Entity Passing from A to B and Open a Gate 3-18
Control Joint Availability of Two Servers 3-20

vii

Work with Resources
4

Model with Resources . 4-2
Resource Blocks . 4-2
Resource Creation Workflow . 4-2

Set Resource Amount with Attributes 4-4

Visualization, Statistics, and Animation
5

Use Statistics to Understand SimEvents Models 5-2
Statistics for Data Analysis . 5-2
Statistics for Run-Time Control . 5-3
Statistical Tools for Discrete-Event Simulation 5-3

Access Statistics from SimEvents Blocks 5-5
Derive Custom Statistics . 5-6

Visualization and Animation . 5-8

Work with Sequence Viewer . 5-9
Visualize Messages . 5-10
Redisplay of Information in Sequence Viewer 5-16
Time in Sequence Viewers . 5-17
Navigation in Sequence Viewers . 5-18
Function Calls in Sequence Viewer . 5-18

Learning More About SimEvents Software
6

Event Calendar . 6-2

Entity Priorities . 6-3

viii Contents

Livelock Prevention . 6-5
Large Finite Numbers of Simultaneous Events 6-5

Storage and Nonstorage Blocks . 6-6
Storage Blocks . 6-6
Nonstorage Blocks . 6-6

Working with Simulink
7

Exchange Data Between SimEvents and Simulink 7-2

Time-Based Signals and SimEvents Block Transitions 7-3
When Signals Transition . 7-3

Save Simulation Data . 7-4
Behavior of the To Workspace Block . 7-4
Send Queue Length to the Workspace 7-4
Data Logging . 7-4

Solvers for Discrete-Event Systems . 7-6
Variable-Step Solvers for Discrete-Event Systems 7-6
Fixed-Step Solvers for Discrete-Event Systems 7-7

SimEvents Support for Simulink Subsystems 7-9
Discrete-Event Blocks in Virtual Subsystems 7-9
Discrete-Event Blocks in Nonvirtual Subsystems 7-9
Discrete-Event Blocks in Variant Subsystems 7-9

Build Discrete-Event Systems Using Charts
8

Discrete-Event Systems Created with Stateflow Charts 8-2
Why Use the Discrete Event Chart . 8-2

How Discrete-Event Charts Differ from Stateflow Charts . . . 8-3
Discrete Event Chart Properties . 8-3

ix

Define Message (Entity) Input and Output 8-4
Define Local Messages . 8-4
Specify Message Properties . 8-4

Event Triggering in Discrete-Event Charts 8-5
Event Triggering . 8-5
Message Triggering . 8-5
Temporal Triggering . 8-6

Build Discrete-Event Systems Using System Objects
9

Create Custom Blocks Using MATLAB Discrete-Event System
Block . 9-2

Why Use the MATLAB Discrete-Event System Block 9-2
Discrete System Framework . 9-3
Create a Custom Entity Server Block 9-8
Create the Model . 9-8
Write Code for Custom Entity Server 9-11

Use a MATLAB Discrete-Event System Block 9-14

Implement a Discrete-Event System Object 9-16
Additional Notes . 9-17

Generate Code for MATLAB Discrete-Event System
Blocks . 9-19

Migrate Existing MATLAB Discrete-Event System System
objects . 9-19

Limitations of Code Generation with Discrete-Event System
Block . 9-21

Custom Entity Types, Ports, and Storage 9-24
Entity Types . 9-24
Custom Entity Ports . 9-25
Custom Entity Storage . 9-25

Work with Events . 9-27
Event Types . 9-27
Event Actions . 9-28

x Contents

Initialization Events . 9-29
Cancellation of Previously Scheduled Events 9-29
Additional Notes . 9-29

Custom Visualization
10

Interface for Custom Visualization . 10-2
SimulationObserver Class . 10-2
Custom Visualization Workflow . 10-2

Create an Application . 10-4

Use the Observer to Monitor the Model 10-7

Stop Simulation and Disconnect the Model 10-8

Custom Visualization Examples . 10-9
Structure of Example Model . 10-9
Visualize Entities . 10-9

Migrating SimEvents Models
11

Migration Considerations . 11-2
When You Should Not Migrate . 11-3

Migration Workflow . 11-4

Identify and Redefine Entity Types . 11-7

Replace Old Blocks . 11-9

Connect Signal Ports . 11-13
If Connected to Gateway Blocks . 11-13
If Using Get Attribute Blocks to Observe Output 11-13
If Connected to Computation Blocks 11-14

xi

If Connected to Reactive Ports . 11-16

Write Event Actions . 11-19
Replace Set Attribute Blocks with Event Actions 11-19
Get Attribute Values . 11-20
Generate Random Numbers with Event Actions 11-21
Replace Event-Based Sequence Block with Event Actions . . 11-25
Replace Attribute Function Blocks with Event Actions 11-26
If Using Simulink Signals in an Event-Based

Computation . 11-29

Observe Output . 11-31

Reactive Ports . 11-33

Troubleshoot SimEvents Models
12

Which Debugging Tool to Use . 12-2

Debug SimEvents Models . 12-3
Start the Debugger . 12-4
Step Through Model . 12-5

Observe Entities with Animation . 12-13

xii Contents

Working with Entities

• “Entity Types” on page 1-2
• “Events and Event Actions” on page 1-5
• “Event Action Languages” on page 1-8
• “Generate Entities When Events Occur” on page 1-11
• “Run Computations on Events” on page 1-14
• “Specify Intergeneration Times for Entities” on page 1-15
• “Generate Multiple Entities at Time Zero” on page 1-22
• “Count Simultaneous Departures from a Server” on page 1-25
• “Working with Entity Attributes” on page 1-28
• “Manipulate Entity Attributes” on page 1-31
• “Inspect Structures of Entities” on page 1-35
• “Combine Entities” on page 1-38
• “Replicate Entities on Multiple Paths” on page 1-39
• “Measure Point-to-Point Delays” on page 1-41
• “Attribute Value Support” on page 1-46

1

Entity Types
An entity type is the identification tag associated with any block that creates entities in
your model. For the Entity Generator block, you assign a name to the entity type on the
Entity type tab of the generation block. From this block, each new entity receives this
tag. For example, the name of the entity type associated with an Entity Generator in
your model might be Customer. Each entity that originates in that block receives this
entity type. A Composite Entity Creator block also generates new entities by combining
two or more existing entities to form a new composite entity. You can assign a new entity
type name to the entity type (named Combined by default).

Note The Entity Replicator block also generates new entities by outputting copies of an
incoming entity. However, because the incoming entity already possesses an entity type,
the block does not create new entity types for the copies.

As an entity progresses through your model, its type does not change. Even if the entity
acquires attribute, timeout, or timer data that give it a more complex structure, the
entity type remains the same. Although a Composite Entity Creator block forms new
composite entities with a new entity type, the underlying entity types remain the same.

By default, each new entity type that SimEvents creates in your model uses the name
Entity.

The Entity Generator block can generate these entity types:

• Anonymous — Unstructured entity with no name. You can specify only entity priority
and initial data value for anonymous entity types.

• Structured — Structured entity type that you define in this block dialog box. You can
name entities, specify priorities, and specify attributes for the entity in the Define
attributes section of the Entity Generator block. Attributes are data carried by
entities. Creating a structured entity in this tab is a convenient way to create an
entity without having to create an associated bus object in Simulink®.

• Bus object — Entity type that you define using Simulink bus objects. You can name
entities, specify priorities, and specify attributes for the entity. To specify this entity
type, you must have an existing bus object, created in Simulink, and use that bus
object name as the name of the entity type. This bus object:

• Must be a valid bus object with one or more bus elements at a single level.

1 Working with Entities

1-2

• Cannot contain variable-size elements. This limitation is also true for entities
registered as bus objects through the Composite Entity Creator block.

Entity Data Type Support

Entities and attributes can be of any data type that Simulink supports, including
enumerated types. For more information, see “Data Types Supported by Simulink”
(Simulink). Entities and attributes cannot be a fixed-point data type.

Data types supported by MATLAB® but not supported by Simulink may not be passed
between the Simulink model and event actions.

You can use these data types in event actions as local variables.

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event Chart | Entity
Gate | Entity Generator | Entity Input Switch | Entity Multicast | Entity Output
Switch | Entity Queue | Entity Replicator | Entity Server | Entity Terminator |
MATLAB Discrete Event System | Multicast Receive Queue | Resource Acquirer |
Resource Pool | Resource Releaser

Related Examples
• “Generate Entities When Events Occur” on page 1-11
• “Specify Intergeneration Times for Entities” on page 1-15
• “Manipulate Entity Attributes” on page 1-31
• “Inspect Structures of Entities” on page 1-35
• “Generate Multiple Entities at Time Zero” on page 1-22
• “Count Simultaneous Departures from a Server” on page 1-25
• “Combine Entities” on page 1-38
• “Replicate Entities on Multiple Paths” on page 1-39

More About
• “What Is an Entity?”
• “Role of Entity Ports and Paths”

 See Also

1-3

• “Attribute Value Support” on page 1-46
• “When to Use Bus Objects” (Simulink)

1 Working with Entities

1-4

Events and Event Actions
In a discrete-event simulation, an event is an observation of an instantaneous incident
that may change a state variable, an output, and/or the occurrence of other events. You
can create event actions to occur when entities change state, for example, when an entity
exits a block. For a list of blocks and the actions they can have, see “Storage Actions”.

An event calendar tracks upcoming events for a model during a discrete-event
simulation. For more information on the event calendar, see “Event Calendar” on page 6-
2.

The event actions assistant helps you create repeated sequence of event actions or
random event actions according to a statistical distribution. For more information on the
event actions assistant, see “Event Actions Assistant for Events”.

Create Event Actions
Define event actions on the Event actions tab of a block. These are the possible actions
for which you can create events.
Entity
Generator

Entity Queue Entity Server Entity
Terminator

Resource
Acquirer

Entity Batch
Creator

Entity
generation

Entity entry
to queue
block

Entity entry
to server
block

Entity entry
to terminator
block

Entity entry
to acquirer
block

Entity entry
to batch block

Entity exit
from block

Entity exit
from block

Service
completion of
entity

N/A Entity exit
from acquirer
block

Entity batch
generation

N/A Entity is
blocked

Entity exit
from block

N/A Entity is
blocked

Entity exit
from block

N/A N/A Entity is
blocked

N/A N/A Entity is
blocked

N/A N/A Entity is
preempted

N/A N/A N/A

In event actions, you can also modify entity attributes (entityName.attributeName),
entity priorities (sys.entity.priority), and entity IDs (sys.entity.id). However,
you cannot change these entity attributes or its system properties (entitySys) for exit
actions in any block. Attempting to change these values causes an error at simulation.

 Events and Event Actions

1-5

The seExampleTankFilling example has two event actions defined, in the Entity
Generator and Entity Server blocks. This example recreates the event action in the
Entity Server block.

1 In a new model, from the SimEvents library, drag the Entity Server and Simulink
Function blocks.

2 In the Entity Server block:

• Click the Entity actions tab.
• To create an action on entity entry, click Entry.
• In the Entry action section, type:

startFilling(entity.Capacity);

This command calls the function, startFilling.

The ingoing line to the Entity Server block icon updates with the event action
icon ({...}) indicating that the block defines an event action.

3 In the Simulink Function block:

a In Trigger Port, enter startFilling in the Function name parameter.
b Drag in an Inport block and rename it to cap.
c Rename the u input to capacity and connect it to cap.
d Remove the y output.
e Drag in a MATLAB Function block and an Outport block.
f In the MATLAB Function, enter the code:

function y = toggle()
%#codegen
persistent u

if isempty(u)
 u = -1;
end

1 Working with Entities

1-6

matlab:open_system('seExampleTankFilling')

if u == -1
 u = 1;
else
 u = -1;
end

y = u;
g Connect the y output of the MATLAB Function block to the Outport block and

rename the Outport block to reset.

You have now defined the startFilling function for the event action. To optionally
visualize the connection between the Entity Server block and the Simulink Function
block, in the Editor, select Display > Function Connectors.

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event Chart | Entity
Gate | Entity Generator | Entity Input Switch | Entity Multicast | Entity Output
Switch | Entity Queue | Entity Replicator | Entity Server | Entity Terminator |
MATLAB Discrete Event System | Multicast Receive Queue | Resource Acquirer |
Resource Pool | Resource Releaser

Related Examples
• “Generate Entities When Events Occur” on page 1-11

More About
• “What Is an Event?”
• “What Is an Entity?”
• “Event Action Languages” on page 1-8
• “Run Computations on Events” on page 1-14
• “Event Calendar” on page 6-2

 See Also

1-7

Event Action Languages
In this section...
“Guidelines for Using MATLAB as the Event Action Language” on page 1-8
“Parameters in Event Actions” on page 1-9

You can write SimEvents actions using:

• MATLAB code — Use MATLAB. For information on guidelines for using MATLAB
code as the event action language, see “Guidelines for Using MATLAB as the Event
Action Language” on page 1-8

• Simulink functions — Use the Simulink Function block. The Simulink Function block
does not accept entities as input.

Guidelines for Using MATLAB as the Event Action Language

In general, using MATLAB as the SimEvents event action language follows the same
rules as the use of MATLAB in the MATLAB Function block.

• Include a type prefix for identifiers of enumerated values — The identifier
TrafficColors.Red is valid, but Red is not.

• Use the MATLAB format for comments — Use % to specify comments for consistency
with MATLAB. For example, the following comment is valid:

% This is a valid comment in the style of MATLAB
• Use one-based indexing for vectors and matrices — One-based indexing is consistent

with MATLAB syntax.
• Use parentheses instead of brackets to index into vectors and matrices — This

statement is valid:

a(2,5) = 0;

This statement is not valid:

a[2][5] = 0;
• Persistent variable guidelines:

• Manage states that are not part of the entity structure using MATLAB persistent
variables.

1 Working with Entities

1-8

• Persistent variables defined in any event action of a block is scoped to only that
action.

• Block can share persistent variables across all of its event action by managing it in
a MATLAB function on path (that is invoked from its event actions).

• Two different blocks cannot share the same persistent variable.
• Assign an initial value to local and output data — When using MATLAB as the action

language, data read without an initial value causes an error.
• Do not use parameters that are of data type cell array.

Parameters in Event Actions

From within an event action, you can refer to these parameters:

• Mask-specific parameters you define using the Mask Editor Parameters pane.
• Any variable you define in a workspace (such as base workspace or model workspace).
• Parameters you define using the Simulink.Parameter object.

Note With SimEvents actions, you cannot:

• Modify parameters from within an event action.
• Tune parameters during simulation.

See Also
Entity Generator | Entity Queue | Entity Replicator | Entity Server | Entity
Terminator | MATLAB Function | Multicast Receive Queue | Resource Acquirer |
Simulink Function | Simulink.Parameter

Related Examples
• “Generate Entities When Events Occur” on page 1-11

More About
• “What Is an Event?”

 See Also

1-9

• “Simulink Functions” (Simulink)
• “Mask Editor Overview” (Simulink)

1 Working with Entities

1-10

Generate Entities When Events Occur
In this section...
“Generate Entity When First Entity is Destroyed” on page 1-11
“Generate Event-Based Entities Using Data Sets” on page 1-13

In addition to time-based entity generation, the Entity Generator block enables you to
generate entities in response to events that occur during the simulation. In event-based
generation, a new entity is generated whenever a message arrives at the input port of the
Entity Generator block.

Event times and the time intervals between pairs of successive entities are not
necessarily predictable in advance.

Generating entities when events occur is appropriate if you want the dynamics of your
model to determine when to generate entities.

Generate Entity When First Entity is Destroyed

To generate an entity when the first entity is destroyed, use two Entity Generator blocks
and a Simulink Function block. The Entity Terminator block calls the Simulink Function
after destroying the first entity.

 Generate Entities When Events Occur

1-11

In this example, Entity Generator1 generates the first entity. SendMessage contains the
genNext function, which sends a message.

The Entity Terminator block calls the genNext function.

1 Working with Entities

1-12

Generate Event-Based Entities Using Data Sets

For an example of an example that uses an Excel® spreadsheet, see Generating and
Initializing Entities.

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event Chart | Entity
Gate | Entity Generator | Entity Input Switch | Entity Multicast | Entity Output
Switch | Entity Queue | Entity Replicator | Entity Server | Entity Terminator |
MATLAB Discrete Event System | Multicast Receive Queue | Resource Acquirer |
Resource Pool | Resource Releaser

Related Examples
• “Specify Intergeneration Times for Entities” on page 1-15
• “Manipulate Entity Attributes” on page 1-31
• “Inspect Structures of Entities” on page 1-35
• “Generate Multiple Entities at Time Zero” on page 1-22
• “Count Simultaneous Departures from a Server” on page 1-25
• “Combine Entities” on page 1-38
• “Replicate Entities on Multiple Paths” on page 1-39

More About
• “What Is an Entity?”
• “Role of Entity Ports and Paths”
• “Attribute Value Support” on page 1-46

 See Also

1-13

matlab:open_system('seExampleEntityGenerateInitialize')
matlab:open_system('seExampleEntityGenerateInitialize')

Run Computations on Events
You can run computations on events using event actions by:

• Writing event actions using MATLAB code that perform computations.
• Using the Simulink Function block to call a function that performs computations.

With either of these methods, you can use attribute-defined data to perform the
computations.

See Also

More About
• “What Is an Event?”
• “Event Calendar” on page 6-2

1 Working with Entities

1-14

Specify Intergeneration Times for Entities
The intergeneration time is the time interval between successive entities that the block
generates. You can have a generation process that is:

• Periodic
• Sampled from a random distribution or time-based signal
• From custom code

For example, if the block generates entities at T = 50, T = 53, T = 60, and T = 60.1, the
corresponding intergeneration times are 3, 7, and 0.1. After each new entity departs, the
block determines the intergeneration time that represents the interval until the block
generates the next entity.

Determine Intergeneration Time

You configure the Entity Generator block by indicating criteria that it uses to determine
intergeneration times for the entities it creates. You can generate entities:

• From random distribution
• Periodically
• At arbitrary times

Use the dropdown list in the Time source parameter of the Entity Generation block to
determine intergeneration times:

• Dialog

Uses the Period parameter to periodically vary the intergeneration times.
• Signal port

Uses a signal from an external block, such as the Sine wave block, to vary the
intergeneration times.

• MATLAB action

Enables an Intergeneration time action field, in which you enter MATLAB code to
customize the intergeneration times.

 Specify Intergeneration Times for Entities

1-15

Periodically Vary the Intergeneration Times

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity
Terminator, and Scope blocks.

2 In the Entity Generation tab of the Entity Generator, set the Time source
parameter to Dialog.

3 In the Statistics tab of the Entity Terminator block, select the Number of entities
arrived check box.

4 Connect these blocks and simulate the model. The period is 1.

5 Vary the period to 8 and simulate the model again. Observe the change in the scope.

1 Working with Entities

1-16

Use a Signal to Vary the Intergeneration Times

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity
Terminator, Sine Wave, and Scope blocks.

2 In the Entity Generation tab of the Entity Generator, set the Time source
parameter to Signal port.

A new signal port appears on the Entity Generator block.
3 In the Statistics tab of the Entity Terminator block, select the Number of entities

arrived check box.
4 Double-click the Sine Wave block. By default, the first value of the Sine Wave block

is 0. To add a constant value to the sine to produce the output of this block, change
the Bias parameter to another value, for example, 1.5.

5 Connect these blocks and simulate the model.

 Specify Intergeneration Times for Entities

1-17

Upon generating each entity, the Entity Generator block reads the value of the input
signal and uses that value as the time interval until the next entity generation.

Notice the capital E on the signal line from the Sine Wave block to the Entity
Generator block. This icon indicates the transition from a time-based system to a
discrete-event system.

Customize the Variation of the Intergeneration Times

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity
Terminator, and Scope blocks.

2 In the Entity Generation tab of the Entity Generator, set the Time source
parameter to MATLAB action.

A new Intergeneration time action field appears on the Entity Generator block.
3 To customize the intergeneration times for your model, in the Intergeneration

time action field, enter MATLAB code, for example:

dt = rand();

Note For intergeneration times, you must set the fixed name, dt. You cannot set any
other variable name for this value.

4 In the Statistics tab of the Entity Terminator block, select the Number of entities
arrived check box.

1 Working with Entities

1-18

5 Connect these blocks and simulate the model.

To generate entities with exponential random arrival times, in the Intergeneration
time action field, enter MATLAB code that uses the mean function, for example:

mean = 1;
dt = -mean*log(1-rand());

 Specify Intergeneration Times for Entities

1-19

See Also
Discrete Event Chart | Entity Server | Entity Generator | Entity Queue | Entity
Replicator | Entity Terminator | MATLAB Discrete Event System

Related Examples
• “Generate Entities When Events Occur” on page 1-11
• “Manipulate Entity Attributes” on page 1-31
• “Inspect Structures of Entities” on page 1-35
• “Generate Multiple Entities at Time Zero” on page 1-22
• “Count Simultaneous Departures from a Server” on page 1-25

1 Working with Entities

1-20

• “Combine Entities” on page 1-38
• “Replicate Entities on Multiple Paths” on page 1-39

More About
• “What Is an Entity?”
• “Role of Entity Ports and Paths”
• “Attribute Value Support” on page 1-46

 See Also

1-21

Generate Multiple Entities at Time Zero
In a discrete-event simulation, an event is an observation of an instantaneous incident
that may change a state variable, an output, and/or the occurrence of other events.

Suppose that you want to:

• Preload a queue or server with entities at the start of the simulation, before you
analyze queueing or processing delays.

• Initialize the capacity of a shared resource before you analyze resource allocation
behavior.

In these scenarios, you can simultaneously generate multiple entities at the start of the
simulation. You can then observe the behavior of only those entities for the remainder of
the simulation.

To generate multiple entities at time 0, use MATLAB code in the Entity Generator block.

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity
Terminator, and Dashboard Scope blocks.

2 Double-click the Entity Generator block.
3 From the Time source drop-down list, select MATLAB action.
4 In the Intergeneration time action field, use MATLAB code to enter the number

of entities that you want to generate. For example, you could use 8. In that case, at
simulation time 0, the Entity Generator block generates 8 simultaneous events.

1 Working with Entities

1-22

5 In the Events action tab, randomize the entity attribute. Select the Generate
event action and, in the Generate action field, enter the MATLAB code:

entity.Attribute1=rand();

The output of the Dashboard Scope block shows that the software generates multiple
entities at time 0.

 Generate Multiple Entities at Time Zero

1-23

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event Chart | Entity
Gate | Entity Generator | Entity Input Switch | Entity Multicast | Entity Output
Switch | Entity Queue | Entity Replicator | Entity Server | Entity Terminator |
MATLAB Discrete Event System | Multicast Receive Queue | Resource Acquirer |
Resource Pool | Resource Releaser

Related Examples
• “Generate Entities When Events Occur” on page 1-11
• “Specify Intergeneration Times for Entities” on page 1-15
• “Manipulate Entity Attributes” on page 1-31
• “Inspect Structures of Entities” on page 1-35
• “Count Simultaneous Departures from a Server” on page 1-25
• “Combine Entities” on page 1-38
• “Replicate Entities on Multiple Paths” on page 1-39

More About
• “What Is an Entity?”
• “Role of Entity Ports and Paths”
• “Attribute Value Support” on page 1-46

1 Working with Entities

1-24

Count Simultaneous Departures from a Server
This example shows how to count the simultaneous departures of entities from a server.
Use the d output from the Entity Server block to learn how many entities have departed
(or arrived at) the block. The output signal also indicates when departures occurred. This
method of counting is cumulative throughout the simulation.

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity
Server, Entity Terminator, Simulink Function, and Scope blocks.

2 Double-click the Entity Generator block.

• In the Event actions tab, to generate random attribute values, enter:

entity.Attribute1=rand();
3 Double-click the Entity Server block. In the Main tab:

• In the Capacity parameter, enter inf.
• For the Service time parameter, select MATLAB action.
• In the Service time action parameter, enter:

dt = getServiceTime();
• In the Statistics tab, select Number of entities departed, d.

4 In the Simulink Function block, define the getServiceTime function.

 Count Simultaneous Departures from a Server

1-25

5 Connect the blocks as shown and simulate the model.

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event Chart | Entity
Gate | Entity Generator | Entity Input Switch | Entity Multicast | Entity Output
Switch | Entity Queue | Entity Replicator | Entity Server | Entity Terminator |
MATLAB Discrete Event System | Multicast Receive Queue | Resource Acquirer |
Resource Pool | Resource Releaser

1 Working with Entities

1-26

Related Examples
• “Generate Entities When Events Occur” on page 1-11
• “Specify Intergeneration Times for Entities” on page 1-15
• “Manipulate Entity Attributes” on page 1-31
• “Inspect Structures of Entities” on page 1-35
• “Generate Multiple Entities at Time Zero” on page 1-22
• “Combine Entities” on page 1-38
• “Replicate Entities on Multiple Paths” on page 1-39

More About
• “What Is an Entity?”
• “Role of Entity Ports and Paths”
• “Attribute Value Support” on page 1-46

 See Also

1-27

Working with Entity Attributes

In this section...
“Attach Attributes” on page 1-28
“Set Attributes” on page 1-28

You can attach data to an entity using one or more attributes of the entity. Each
attribute has a name and a numeric value. You can read or change the values of
attributes during the simulation.

For example, suppose your entities represent a message that you are transmitting across
a communication network. You can attach the length of each particular message to the
message itself using an attribute named length.

You can also use attributes to specify the amount of a resource for your model. For more
information, see “Model with Resources” on page 4-2.

Attach Attributes

To attach attributes to an entity, use the Entity Generator block. Attribute attachments
can create new attributes or change the values of existing attributes. You can attach
attributes such as:

• Constant value
• Random numbers
• Elements of either a vector in the MATLAB workspace or a vector that you can type

in a block dialog box
• Values of an output argument of a MATLAB function that you write
• Values of a signal
• Outputs of a function defined in Simulink or Stateflow® environment that you write.

Set Attributes

To build and manage the list of attributes to attach to each departing entity, use the
controls under the Define attributes section of the Entity Generator block. Each
attribute appears as a row in a table.

1 Working with Entities

1-28

Using these controls, you can:

• Add an attribute manually to attach to the entity.
• Modify an attribute that you added to the table from the Available Attributes list to

attach to the entity.

The buttons under Set Attribute perform these actions.
Button Action Notes

Add a template attribute to
the table.

Rename the attribute and
specify its properties.

Remove the selected attribute
from the attribute table.

When you delete an attribute
this way, no confirmation
appears and you cannot undo
the operation.

The table displays the attributes you added manually. Use it to set these attribute
properties.

Property Specify Use
Attribute Name The name of the attribute.

Each attribute must have a
unique name.

Double-click the existing
name, and then type the new
name.

Attribute Initial Value The value to assign to the
attribute (when the
attribute comes from the
dialog box).

Double-click the value, and
then type the value you want
to assign.

See Also
Discrete Event Chart | Entity Generator | MATLAB Discrete Event System

Related Examples
• “Manipulate Entity Attributes” on page 1-31

 See Also

1-29

More About
• “What Is an Entity?”
• “Attribute Value Support” on page 1-46
• “Combine Entities” on page 1-38

1 Working with Entities

1-30

Manipulate Entity Attributes
The attributes table describes some ways that you can use data that you have attached to
an entity.

• Create a signal
• Create a plot
• Compute a different attribute value
• Help specify behavior of a block that supports the use of attribute values for block

parameters. Examples are the service time for a server and the selected port for an
output switch.

Suppose that your entity possesses an attribute with one of these quantities:

• Service time to be used by a downstream server block
• Switching criterion to be used by a downstream switch block

When an entity with one of these attribute quantities arrives at a server or switch block,
you can directly reference the attribute using an option on the server or switch block
dialog box. This approach is better than creating a message or signal with the value and
delivering it before the entity arrives.

Write Functions to Manipulate Attributes

To manipulate attributes using code, use the Event actions tab of a block. In this tab,
you can write MATLAB code to manipulate the attribute. To access the attribute, use the
notation entityName.attributeName. For example:

entity.Attribute1=5;

For example, you might want manipulate the attributes for service completion.

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity
Servern, and Entity Terminator blocks and connect them.

 Manipulate Entity Attributes

1-31

2 Double-click Entity Generator and, in the Entity type tab, add three attributes to
the attributes table.

3 In the Entity Server block, click the Event actions tab.
4 For the Service complete action, enter MATLAB code to manipulate the entity

attributes you added in the Entity Generator block. For example:

1 Working with Entities

1-32

This code updates the Entity Server block with the event action icon.
5 To see the action, in the model, hover over the Entity Server block event action icon

block.

See Also
Discrete Event Chart | Entity Generator | MATLAB Discrete Event System

Related Examples
• “Manipulate Entity Attributes” on page 1-31

 See Also

1-33

More About
• “What Is an Entity?”
• “Working with Entity Attributes” on page 1-28
• “Attribute Value Support” on page 1-46

1 Working with Entities

1-34

Inspect Structures of Entities
You can inspect entity structures using these methods:

• On a signal line, using the Signal Hierarchy Viewer (for more information, see
“Display Entity Types” on page 1-35).

• In a block at run-time, using the Entity Inspector

In this section...
“Display Entity Types” on page 1-35
“Inspect Entities at Run Time” on page 1-36

Display Entity Types

To show entity types in your model, in the model editor, right-click a line and select
Signal Hierarchy. The Signal Hierarchy Viewer interactively displays about entities,
signals, and bus objects. For more information on the Signal Hierarchy Viewer, see
“Signal Hierarchy Viewer” (Simulink).

If you have configured any blocks to receive an entity structure that the preceding block
does not provide, upon compilation, the software automatically displays entity types.
This behavior helps you to troubleshoot the mismatch in entity structures before
simulation. The software displays an approximate list of the entity types and attributes.
Use this as a guideline and not as a definitive list.

If entities on two separate paths have the same structure throughout the model, you can
use the same entity type for both entity paths.

 Inspect Structures of Entities

1-35

If you now modify the second Entity Generate block path to change data2 to data3, the
structure of entities on the second path becomes unique. You must specify a new entity
type name for the second Entity Generator block.

Inspect Entities at Run Time

To inspect entities at run-time, use the Entity Inspector. Inspect entities and their
attribute values in a block.

1 In a SimEvents model, use the Simulink Simulation Stepper to step through the
model.

2 As you step through the model, each block with entities updates to contain a
magnifying glass.

3 To display entity details, including attributes, click the magnifying glass.

1 Working with Entities

1-36

4 To see the number of entities, hover over the magnifying glass.

Alternatively, use the SimEvents Debugger to inspect entities. For more information, see
SimEvents Debugger.

See Also
Entity Generator | SimEvents Debugger

More About
• “What Is an Entity?”
• “Entity Types” on page 1-2
• “Role of Entity Ports and Paths”
• “Attribute Value Support” on page 1-46

 See Also

1-37

Combine Entities
You can combine entities from different paths using the Composite Entity Creator block.
The entities that you combine, called component entities, might represent different parts
within a larger item, such as the header, payload, and trailer that are parts of a data
packet. Alternatively, you can model resource allocation by combining an entity that
represents a resource with an entity that represents a part or other item.

The Composite Entity Creator block and its surrounding blocks automatically detect
when all necessary component entities are present and when the composite entity that
results from the combining operation will be able to advance to the next block.

The Composite Entity Creator block provides options for managing information
(attributes and timers) associated with the component entities. You can also configure
the Composite Entity Creator block to make the combining operation reversible via the
Composite Entity Splitter block.

See Also
Composite Entity Creator | Composite Entity Splitter | Entity Generator

More About
• “What Is an Entity?”

1 Working with Entities

1-38

Replicate Entities on Multiple Paths
The Entity Replicator block enables you to distribute copies of an entity on multiple
entity paths. Replicating entities might be a requirement of the situation you are
modeling. For example, copies of messages in a multicasting communication system can
advance to multiple transmitters or multiple recipients.

Similarly, copies of computer jobs can advance to multiple computers in a cluster so that
the jobs can be processed in parallel on different platforms.

In some cases, replicating entities is a convenient modeling construct.

Modeling Notes

• Unlike the Entity Output Switch block, the Entity Replicator block has departures at
all of its entity output ports that are not blocked, not just a single selected entity
output port.

• If your model routes the replicates such that they use a common entity path, then be
aware that blockages can occur during the replication process. For example, if you
have this scenario:

• An Entity Replicator block has the Replicas depart from parameter set to
Separate output ports.

• The block has these output ports connected to individual Entity Server blocks.

A blockage can occur because the servers can accommodate at most one of the
replicates at a time. The blockage causes fewer than the maximum number of
replicates to depart from the block.

• Each time the Entity Replicator block replicates an entity, the copies depart in a
sequence whose start is determined by the Hold original entity until all replicas
depart parameter. Although all copies depart at the same time instant, the sequence
might be significant in some modeling situations. For details, see the reference page
for the Entity Replicator block.

See Also
Entity Generator | Entity Replicator

 Replicate Entities on Multiple Paths

1-39

More About
• “What Is an Entity?”

1 Working with Entities

1-40

Measure Point-to-Point Delays
Determine how long each entity takes to advance from one block to another, or how much
time each entity spends in a particular region of your model. To compute these durations,
you can measure time durations on each entity that reaches a particular spot in the
model. A general workflow is:

1 Create an attribute on the entity that can hold the time value.
2 When the entity reaches a particular point in the model, set the current value of

time on the attribute. Call a Simulink function that contains a Digital Clock block.
3 When the entity reaches the destination, compute the time interval by passing the

attribute value to another Simulink function that compares it to the current
simulation time.

Basic Example Using Timer Blocks

This example lets you see if a FIFO order or prioritized queue for customers results in a
shorter wait time. The startTimer and readTimer Simulink functions jointly perform
the timing computation. This example uses the Mean block from the DSP System
Toolbox™ to calculate average times.

 Measure Point-to-Point Delays

1-41

This example has four Simulink Function blocks. Two define timer functions, startTimer
and readTimer. The other functions calculate average times.

1 In a new model, drag the blocks shown in the example and relabel and connect them
as shown. For convenience, drag the

2 For the startTimer block, define:

3 For the readTimer block, define:

4 For the avg_time_fifo(t) and avg_time_prioritySimulink Function blocks,
insert a Mean block, for example:

1 Working with Entities

1-42

5 For the Entity Generator block:

a In the Entity type tab, add two attributes, ServiceTime and Timer.
b In the Entity actions tab, set the two attribute values:

entity.ServiceTime = exprnd(3);
entitySys.priority = randi(2);

6 In Entity Queue:

a In the Main tab, set Queue type to FIFO.
b In the Event actions tab, call the startTimer function for the Entry action:

entity.Timer = startTimer();
7 In Entity Queue1:

a In the Main tab, configure the block to be a priority queue with a priority source
of entitySys.priority:

 Measure Point-to-Point Delays

1-43

b In the Event actions tab, call the startTimer function for the Entry action:
entity.Timer = startTimer();

8 For both Entity Server blocks:

a Set Service time source to Attribute.
b Set Service time attribute name to ServiceTime.

9 For Entity Terminator, call the readTimer and avg_time_fifo functions for the
Entry event:
% Read timer
elapsedTime = readTimer(entity.Timer);

1 Working with Entities

1-44

% Compute average
avg_time_fifo(elapsedTime);

10 For Entity Terminator1, call the readTimer and avg_time_priority functions for
Entry event:

% Read timer
elapsedTime = readTimer(entity.Timer);

% Compute average
avg_time_priority(elapsedTime);

11 Save and run the model.

See Also
Entity Generator | Entity Replicator | Simulink Function

More About
• “What Is an Entity?”

 See Also

1-45

Attribute Value Support
These lists summarize the characteristics of attribute values for structured entity types.

Permitted Characteristics of Attribute Values

• Real or complex
• Array of any dimension, where the dimensions remain fixed throughout the

simulation
• All built-in data types (double, single, int8, uint8, int16, uint16, int32, and

uint32)
• Enumerations

For a given attribute, the characteristics of the value must be consistent throughout the
discrete-event system in the model.

Not Permitted as Attribute Values

• Structure
• Bus
• Variable-size signals or variable-size arrays
• Frame

See Also
Discrete Event Chart | Entity Generator | MATLAB Discrete Event System

Related Examples
• “Manipulate Entity Attributes” on page 1-31

More About
• “What Is an Entity?”
• “Working with Entity Attributes” on page 1-28

1 Working with Entities

1-46

Modeling Queues and Servers

• “Model Basic Queuing Systems” on page 2-2
• “Sort by Priority” on page 2-6
• “Task Preemption in a Multitasking Processor” on page 2-8
• “Determine Whether a Queue Is Nonempty” on page 2-11
• “Model Server Failure” on page 2-12

2

Model Basic Queuing Systems

In this section...
“Example of a Logical Queue” on page 2-2
“Vary the Service Time of a Server” on page 2-2

Example of a Logical Queue

Suppose that you are modeling a queue that can physically hold 100 entities and you
want to determine what proportion of the time the queue length exceeds 10. You can
model the long queue as a pair of shorter queues connected in series. The shorter queues
have length 90 and 10.

Although the division of the long queue into two shorter queues has no basis in physical
reality, it enables you to gather statistics related to one of the shorter queues. In
particular, you can view the queue length (n) of the queue having length 90. If the signal
is positive over a nonzero time interval, then the length-90 queue contains an entity that
cannot advance to the length-10 queue. This means that the length-10 queue is full. As a
result, the physical length-100 queue contains more than 10 items. Determining the
proportion of time the physical queue length exceeds 10 is equivalent to determining the
proportion of time the queue length signal of the logical length-90 queue exceeds 0.

Vary the Service Time of a Server

You can vary the service time of a server using one of the following methods:

• Constant source, where you vary the constant
• Randomized source
• Arbitrary source
• Time-based source

Use the Service time source parameter of the Entity Server block to apply these
methods. You can select from:

• Dialog

Enter the constant value in the Service time value parameter.

2 Modeling Queues and Servers

2-2

• Signal port

Connect a time source to the resulting signal port.
• Attribute

Enter the name of the attribute that contains data to be interpreted as service.
• MATLAB action

In the Service time action section, enter MATLAB code to vary the service time.
Assign the variable dt, which the model uses as service time.

Random Service Times

This example is a simple queuing system in which entities arrive at a fixed deterministic
rate. They then wait in a queue and advance to a server that services the entities at
random intervals. It illustrates use of the Service time from random
distribution design pattern.

1 In a new model, drag the blocks shown in the example and relabel and connect them
as shown. For convenience, start with the Service time from random
distribution design pattern

2 To generate entities every .5 seconds, in the Entity Generator block:

a In the Entity Generation tab, change the Period to .5.
b In the Statistics tab, select Number of entities departed, d.

3 In the Entity Queue block, select Number of entities in block, n.
4 In the Entity Server block:

a Verify that the server is configured for random service time. If not, copy the
Server block from the Service time from random distribution design
pattern.

 Model Basic Queuing Systems

2-3

b In the Statistics tab, select Number of entities in block, n.
5 In the Entity Terminator block, in the Statistics tab, select Number of entities

arrived, a.
6 Save and run the model. In particular, observe the pattern of the entities leaving the

Entity Generator block and the entities at random service times.

See Also
Entity Queue | Entity Server

Related Examples
• “Sort by Priority” on page 2-6
• “Task Preemption in a Multitasking Processor” on page 2-8
• “Determine Whether a Queue Is Nonempty” on page 2-11
• “Model Server Failure” on page 2-12

2 Modeling Queues and Servers

2-4

More About
• “Storage”

 See Also

2-5

Sort by Priority
In this section...
“Behavior of Priority Mode of Entity Queue Block” on page 2-6
“Serve Preferred Customers First” on page 2-6

Behavior of Priority Mode of Entity Queue Block
The Priority mode of the Entity Queue block supports queuing in which entities
positions in the queue are based primarily on specific attribute values. Arrival times are
relevant only when attribute values are equal. You specify the attribute and the sorting
direction using the Priority source and Sorting direction parameters in the block
dialog box.

Serve Preferred Customers First
In this example, two types of customers enter a queuing system. One type, considered to
be preferred customers, are less common but require longer service. The priority queue
places preferred customers ahead of nonpreferred customers. The model plots the
average system time for the set of preferred customers and separately for the set of
nonpreferred customers in a Dashboard Scope block.

You can see from the plots that despite the shorter service time, the average system time
for the nonpreferred customers is much longer than the average system time for the
preferred customers.

2 Modeling Queues and Servers

2-6

Comparison with Unsorted Behavior

If the queue used a FIFO discipline for all customers instead of a priority sorting, then
the average system time would decrease slightly for the nonpreferred customers and
increase markedly for the preferred customers.

See Also
Entity Queue | Entity Server

Related Examples
• “Model Basic Queuing Systems” on page 2-2
• “Task Preemption in a Multitasking Processor” on page 2-8
• “Determine Whether a Queue Is Nonempty” on page 2-11
• “Model Server Failure” on page 2-12

More About
• “Storage”

 See Also

2-7

Task Preemption in a Multitasking Processor
This example shows how to force service completion in an Entity Server block using
functionality available on the block Preemption tab.

The example shows preemption—replacement—of low priority tasks by a high priority
task in a multitasking processor. An Entity Server block represents the task processor
presented with a capacity to process multiple concurrent tasks.

The following graphic shows how the model generates both low and high priority tasks.

• The top and bottom Entity Generator randomly generate entities that represent high
and low priority tasks, respectively. Both blocks use the exprnd function to generate
random entities. The top block uses exprnd(3), the bottom uses exprnd(1), which
requires the Statistics and Machine Learning Toolbox™ license.

• The Entity Input Switch block merges the paths of the new low priority tasks with
previously preempted tasks that are returning from the task processor (server).

• The Simulink Function block runs the getCurrentTime function to start a timer on
the low priority tasks. When preemption occurs, a downstream Simulink Function
block determines the remaining service time of the preempted tasks.

• The Entity Output Switch block merges the paths of the high and low priority tasks.
Tasks on the merged path proceed for processing.

An Entity Server block represents a multitasking processor with capacity for multiple
tasks.

2 Modeling Queues and Servers

2-8

When preemption occurs, causing the Entity Server block to complete immediately
service of all low priority tasks, one of the two Simulink Function blocks calculates the
elapsed time of each departing task using the recordPreferredWaitTimes and
recordNonPreferredWaitTimes functions. The two Entity Terminator blocks calls
these Simulink Function to calculate the elapsed times.

If the elapsed time of a departing task is less than the service time of the Entity Server
block, meaning that preemption forced the task to depart the server early, the Output
Switch block feeds the task back to reenter the server. If the elapsed time in the
Simulink Function getCurrentTime block is equal to the service time of the Entity
Server block, the server has completed the full service time on the task. The entity
terminates in the Entity Terminator block.

The scope plots show the simulation results.

See Also
Entity Queue | Entity Server

 See Also

2-9

Related Examples
• “Model Basic Queuing Systems” on page 2-2
• “Sort by Priority” on page 2-6
• “Determine Whether a Queue Is Nonempty” on page 2-11
• “Model Server Failure” on page 2-12

More About
• “Storage”

2 Modeling Queues and Servers

2-10

Determine Whether a Queue Is Nonempty
To determine whether a queue is storing any entities, use this technique:

1 Enable the n output signal from the queue block. In the block dialog box, on the
Statistics tab, select the Number of entities in block, n check box.

2 From the Sinks library in the Simulink library set, insert a Scope block into the
model. Connect the n output port of the queue block to the input port of the Scope
block.

The scope shows if the queue is empty.

See Also
Entity Queue | Entity Server

Related Examples
• “Model Basic Queuing Systems” on page 2-2
• “Sort by Priority” on page 2-6
• “Task Preemption in a Multitasking Processor” on page 2-8
• “Model Server Failure” on page 2-12

More About
• “Storage”

 Determine Whether a Queue Is Nonempty

2-11

Model Server Failure
In this section...
“Server States” on page 2-12
“Use a Gate to Implement a Failure State” on page 2-12

Server States

In some applications, it is useful to model situations in which a server fails. For example,
a machine breaks down and later is repaired, or a network connection fails and later is
restored. This section explores ways to model failure of a server, and server states.

Server blocks do not have built-in states, so you can design states in any way that is
appropriate for your application. Some examples of possible server states are in this
table.
Server as Communication
Channel

Server as Machine Server as Human Processor

Transmitting message Processing part Working
Connected but idle Waiting for new part to

arrive
Waiting for work

Unconnected Off Off duty
Holding message (pending
availability of destination)

Holding part (pending
availability of next operator)

Waiting for resource

Establishing connection Warming up Preparing to begin work

Use a Gate to Implement a Failure State

For any state that represents a server inability or refusal to accept entity arrivals even
though the server is not necessarily full, a common implementation involves an Entity
Gate block preceding the server.

The gate prevents entity access to the server whenever the gate control message at the
inport port at the top of the block carries zero or negative values. The logic that creates
the control message determines whether the server is in a failure state. You can
implement such logic using the Simulink Function block, using a Message Send block, or
using Stateflow charts to transition among a finite number of server states.

2 Modeling Queues and Servers

2-12

This example shows an instance in which an Entity Gate block precedes a server. The
example is not specifically about a failure state, but the idea of controlling access to a
server is similar. It models a stochastically occurring failure that lasts for some amount
of time.

Note A gate prevents new entities from arriving at the server but does not prevent the
current entity from completing its service. If you want to eject the current entity from the
server upon a failure occurrence, then you can use the preemption feature of the server to
replace the current entity with a high-priority “placeholder” entity.

See Also
Entity Queue | Entity Server

Related Examples
• “Model Basic Queuing Systems” on page 2-2
• “Sort by Priority” on page 2-6
• “Task Preemption in a Multitasking Processor” on page 2-8
• “Determine Whether a Queue Is Nonempty” on page 2-11

 See Also

2-13

More About
• “Storage”

2 Modeling Queues and Servers

2-14

Routing Techniques

• “Role of Paths in SimEvents Models” on page 3-2
• “Select Departure Path Using Entity Output Switch” on page 3-5
• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Combine Entity Paths” on page 3-10
• “Use Messages To Route Entities” on page 3-12
• “Use Attributes to Route Entities” on page 3-15
• “Role of Gates in SimEvents Models” on page 3-16
• “Enable a Gate for a Time Interval” on page 3-18

3

Role of Paths in SimEvents Models

In this section...
“Definition of Entity Paths” on page 3-2
“Implications of Entity Paths” on page 3-2
“Overview Blocks for Designing Paths” on page 3-2

Definition of Entity Paths

An entity path is a connection from an entity output port to an entity input port, depicted
as a line connecting the entity ports of two SimEvents blocks. An entity path represents
the equivalence between an entity's departure from the first block and arrival at the
second block. For example, any entity that departs from the output port of an Entity
Queue block set to FIFO mode equivalently arrives at an Entity Server block input port.

The existence of the entity path does not guarantee that any entity actually uses the
path; for example, the simulation could be so short that no entities are ever generated.
Even when an entity path is used, it is used only at a discrete set of times during the
simulation.

Implications of Entity Paths

In some models, you can use the entity connection lines to infer the full sequence of
blocks that a given entity arrives at, throughout the simulation.

In many discrete-event models, however, the set of entity connection lines does not
completely determine the sequence of blocks that each entity arrives at.

By looking at entity connection lines alone, you cannot tell which queue block's input port
an entity will arrive at. Instead, you need to know more about how the Entity Output
Switch block behaves and you might even need to know the outcome of certain run-time
decisions.

Overview Blocks for Designing Paths

You design entity paths by choosing or combining entity paths using these blocks:

3 Routing Techniques

3-2

• Entity Input Switch
• Entity Output Switch
• Entity Replicator

These blocks have extra entity ports that let you vary the model's topology (that is, the
set of blocks and connection lines).

Typical reasons for manipulating entity paths are

• To describe an inherently parallel behavior in the situation you are modeling — for
example, a computer cluster with two computers that share the computing load. You
can use the Entity Output Switch block to send computing jobs to one of the two
computers. You might also use the Entity Input Switch block if computing jobs share
a common destination following the pair of computers.

• To design nonlinear topologies, such as feedback loops — for example, repeating an
operation if quality criteria such as quality of service (QoS) are not met. You can use
the Entity Input Switch block to combine the paths of new entities and entities that
require a repeated operation.

• To incorporate logical decision making into your simulation — for example,
determining scheduling protocols. You might use the Entity Input Switch block to
determine which of several queues receives attention from a server.

Other blocks in the SimEvents library have secondary features, such as preemption from
a server, that give you opportunities to design paths.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity Replicator

Related Examples
• “Select Departure Path Using Entity Output Switch” on page 3-5
• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Combine Entity Paths” on page 3-10
• “Use Messages To Route Entities” on page 3-12
• “Enable a Gate for a Time Interval” on page 3-18

 See Also

3-3

More About
• “Use Attributes to Route Entities” on page 3-15
• “Role of Gates in SimEvents Models” on page 3-16

3 Routing Techniques

3-4

Select Departure Path Using Entity Output Switch

In this section...
“Role of the Entity Output Switch” on page 3-5
“Sample Use Cases” on page 3-5
“Select the First Available Server” on page 3-6
“Use an Attribute to Select an Output Port” on page 3-6

Role of the Entity Output Switch

The Entity Output Switch block selects one among a number of entity output ports. The
selected port can change during the simulation. You have several options for criteria that
the block uses to select an entity output port.

When the selected port is not blocked, an arriving entity departs through this port.

Sample Use Cases

Here are some scenarios in which you might use an output switch:

• Entities advance to one of several queues based on efficiency or fairness concerns. For
example, airplanes advance to one of several runways depending on queue length, or
customers advance to the first available cashier out of several cashiers.

Comparing different approaches to efficiency or fairness, by testing different rules to
determine the selected output port of the output switch, might be part of your goal in
simulating the system.

• Entities advance to a specific destination based on their characteristics. For example,
parcels advance to one of several delivery vehicles based on the locations of the
specified recipients.

• Entities use an alternate route in case the preferred route is blocked. For example, a
communications network drops a packet if the route to the transmitter is blocked and
the simulation gathers statistics about dropped packets.

The topics listed below illustrate the use of the Entity Output Switch block.

 Select Departure Path Using Entity Output Switch

3-5

Topic Features of Example
“Select the First Available Server” on page
3-6

First port that is not blocked
switching criterion

“Use an Attribute to Select an Output Port”
on page 3-6

Attribute-based switching, where the
attribute value is random

Select the First Available Server

Assume an example where entities arriving at the Entity Output Switch block depart
through the first entity output port that is not blocked, as long as at least one entity
output port is not blocked. An everyday example of this approach is a single queue of
people waiting for service by one of several bank tellers, cashiers, call center
representatives, etc. Each person in the queue wants to advance as soon as possible to
the first available service provider without preferring one over another.

You can implement this approach by setting the Switching criterion parameter in the
Entity Output Switch block to First port that is not blocked.

Use an Attribute to Select an Output Port

Consider the situation in which parcels are sorted among several delivery vehicles based
on the locations of the specified recipients. If each parcel is an entity, then you can attach
data to each entity to indicate the location of its recipient. To implement the sorting, set
the Switching criterion parameter in the Entity Output Switch block to From
attribute.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity Replicator

Related Examples
• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Combine Entity Paths” on page 3-10
• “Use Messages To Route Entities” on page 3-12
• “Enable a Gate for a Time Interval” on page 3-18

3 Routing Techniques

3-6

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Use Attributes to Route Entities” on page 3-15
• “Role of Gates in SimEvents Models” on page 3-16

 See Also

3-7

Select Arrival Path Using Entity Input Switch

In this section...
“Role of the Input Switch” on page 3-8
“Round-Robin Approach to Choosing Inputs” on page 3-8

Role of the Input Switch

The Entity Input Switch chooses among a number of entity input ports. This block selects
exactly one entity input port for potential arrivals and makes all other entity input ports
unavailable. The selected entity input port can change during the simulation. You have
several options for criteria that the block uses for selecting an entity input port.

A typical scenario in which you might use an input switch is when multiple sources of
entities feed into a single queue, where the sequencing follows specific rules. For
example, users of terminals in a time-shared computer submit jobs to a queue that feeds
into the central processing unit, where an algorithm regulates access to the queue so as
to prevent unfair domination by any one user.

Round-Robin Approach to Choosing Inputs

In a round-robin approach, an input switch cycles through the entity input ports in
sequence. After the last entity input port, the next selection is the first entity input port.
The switch selects the next entity input port after each entity departure. When the
switch selects an entity input port, it makes the other entity input ports unavailable,
regardless of how long it takes for an entity to arrive at the selected port.

You can implement a round-robin approach by

1 Setting the Active port selection parameter to Switch.
2 Setting the Switching criterion parameter to Round robin.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity Replicator

3 Routing Techniques

3-8

Related Examples
• “Select Departure Path Using Entity Output Switch” on page 3-5
• “Combine Entity Paths” on page 3-10
• “Use Messages To Route Entities” on page 3-12
• “Enable a Gate for a Time Interval” on page 3-18

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Use Attributes to Route Entities” on page 3-15
• “Role of Gates in SimEvents Models” on page 3-16

 See Also

3-9

Combine Entity Paths

In this section...
“Using Entity Input Switch to Combine Paths” on page 3-10
“Sequence Simultaneous Pending Arrivals” on page 3-10

Using Entity Input Switch to Combine Paths

You can merge multiple paths into a single path using the Entity Input Switch block
with the Active port selection parameter set to All. Merging entity paths does not
change the entities themselves, just as merging lanes on a road does not change the
vehicles that travel on it. In particular, the Entity Input Switch block does not create
aggregates or batches.

Here are some scenarios in which you might combine entity paths:

• Attaching different data — Multiple entity generator blocks create entities having
different values for a particular attribute. The entities then follow a merged path but
might be treated differently later based on their individual attribute values.

• Merging queues — Multiple queues merge into a single queue.
• Connecting a feedback path — A feedback path enters the same queue as an ordinary

path.

Sequence Simultaneous Pending Arrivals

The Entity Input Switch block does not experience any collisions, even if multiple entities
attempt to arrive at the same time. The categories of behavior are as follows:

• If the entity output port is not blocked when the entities attempt to arrive, then the
sequence of arrivals depends on the sequence of departure events from blocks that
precede the Entity Input Switch block.

Even if the departure time is the same for multiple entities, the sequence might affect
the system's behavior. For example, if the entities advance to a queue, the departure
sequence determines their positions in the queue.

• If pending entities are waiting to advance to the Entity Input Switch block when its
entity output port changes from blocked to unblocked, then the entity input ports are

3 Routing Techniques

3-10

notified of the change sequentially. The change from blocked to unblocked means that
an entity can advance to the Entity Input Switch block.

If at least two entities are waiting to advance to the Entity Input Switch block via
distinct entity input ports, then the notification sequence is important because the
first port to be notified of the change is the first to advance an entity to the Entity
Input Switch block.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity Replicator

Related Examples
• “Select Departure Path Using Entity Output Switch” on page 3-5
• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Use Messages To Route Entities” on page 3-12
• “Enable a Gate for a Time Interval” on page 3-18

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Use Attributes to Route Entities” on page 3-15
• “Role of Gates in SimEvents Models” on page 3-16

 See Also

3-11

Use Messages To Route Entities

In this section...
“Control Output Switch with a Message” on page 3-12
“Specify an Initial Port Selection” on page 3-13

Control Output Switch with a Message

This example shows how to change the selected output port of an Entity Output Switch
block to route entities along different paths. The software selects the path on a per-entity
basis, not on a predetermined time schedule.

Consider the following example.

The SwitchCtrl function contains a single Repeating Sequence Stair block, whose
Sample time parameter is set to -1 (inherited).

When the Simulink Function block executes, it outputs the next number from a
repeating sequence. In this model, the output message value is 3, 2 or 1, based on the
sequence of values specified in the Repeating Sequence Stair block.

3 Routing Techniques

3-12

When service in the Entity Server block is complete, the entity advances to the Entity
Output Switch block. The output message of the Simulink Function block determines
which output port the entity uses when it departs the Entity Output Switch block.

Specify an Initial Port Selection

When the Entity Output Switch block uses an input message, the block might attempt to
use the message before its first sample time hit. If the initial value of the message is out
of range (for example, it is unavailable). You should then specify the initial port selection
in the Entity Output Switch block's dialog box. Use this procedure:

1 Select From control port.
2 Set From control port to the desired initial port selection. The value must be an

integer between 1 and Number of output ports. The Entity Output Switch block
uses Initial port selection until the first control port message arrives.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity Replicator

Related Examples
• “Select Departure Path Using Entity Output Switch” on page 3-5

 See Also

3-13

• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Combine Entity Paths” on page 3-10
• “Enable a Gate for a Time Interval” on page 3-18

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Use Attributes to Route Entities” on page 3-15
• “Role of Gates in SimEvents Models” on page 3-16

3 Routing Techniques

3-14

Use Attributes to Route Entities
Suppose entities represent manufactured items that undergo a quality control process
followed by a packaging process. Items that pass the quality control test proceed to one of
three packaging stations, while items that fail the quality control test proceed to one of
two rework stations. You can model the decision making using these switches:

• An Entity Output Switch block that routes items based on an attribute that stores the
results of the quality control test

• An Entity Output Switch block that routes passing-quality items to the packaging
stations

• An Entity Output Switch block that routes failing-quality items to the rework stations

You can use the block Switching criterion parameter From attribute option to use
an attribute to select the output port.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity Replicator

Related Examples
• “Select Departure Path Using Entity Output Switch” on page 3-5
• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Combine Entity Paths” on page 3-10
• “Use Messages To Route Entities” on page 3-12
• “Enable a Gate for a Time Interval” on page 3-18

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Role of Gates in SimEvents Models” on page 3-16

 Use Attributes to Route Entities

3-15

Role of Gates in SimEvents Models

In this section...
“Overview of Gate Behavior” on page 3-16
“Gate Behavior” on page 3-17

Overview of Gate Behavior

By design, certain blocks change their availability to arriving entities depending on the
circumstances. For example,

• A queue or server accepts arriving entities as long as it is not already full to capacity.
• An input switch accepts an arriving entity through a single selected entity input port

but forbids arrivals through other entity input ports.

Some applications require more control over whether and when entities advance from
one block to the next. A gate provides flexible control via its changing status as either
open or closed: by definition, an open gate permits entity arrivals as long as the entities
would be able to advance immediately to the next block, while a closed gate forbids entity
arrivals. You configure the gate so that it opens and closes under circumstances that are
meaningful in your model.

For example, you might use a gate

• To create periods of unavailability of a server. For example, you might be simulating a
manufacturing scenario over a monthlong period, where a server represents a
machine that runs only 10 hours per day. An enabled gate can precede the server, to
make the server's availability contingent upon the time.

• To make departures from one queue contingent upon departures from a second queue.
A release gate can follow the first queue. The gate's control input determines when
the gate opens, based on decreases in the number of entities in the second queue.

• With the First port that is not blocked mode of the Entity Output Switch
block. Suppose each entity output port of the switch block is followed by a gate block.
An entity attempts to advance via the first gate; if it is closed, then the entity
attempts to advance via the second gate, and so on.

3 Routing Techniques

3-16

Gate Behavior

The Entity Gate block offers these fundamentally different kinds of gate behavior:

• The enabled gate, which uses a control signal to determine time intervals over which
the gate is open or closed

• The release gate, which uses a control message to determine a discrete set of times at
which the gate is instantaneously open. The gate is closed at all other times during
the simulation.

Tip Many models follow a gate with a storage block, such as a queue or server.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity Replicator

Related Examples
• “Select Departure Path Using Entity Output Switch” on page 3-5
• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Combine Entity Paths” on page 3-10
• “Use Messages To Route Entities” on page 3-12
• “Enable a Gate for a Time Interval” on page 3-18

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Use Attributes to Route Entities” on page 3-15

 See Also

3-17

Enable a Gate for a Time Interval
In this section...
“Behavior of Entity Gate Block in Enabled Mode” on page 3-18
“Sense an Entity Passing from A to B and Open a Gate” on page 3-18
“Control Joint Availability of Two Servers” on page 3-20

Behavior of Entity Gate Block in Enabled Mode

The Entity Gate block uses a control signal at the input port at the top of the block to
determine when the gate is open or closed:

• When a message with a positive payload arrives at the enable port at the top of the
block, the gate is open and an entity can arrive as long as it would be able to advance
immediately to the next block.

• When a message with zero or negative payload arrives at the enable port at the top of
the block, the gate is closed and no entity can arrive.

Because that incoming signal can remain positive for a time interval of arbitrary length,
an enabled gate can remain open for a time interval of arbitrary length. The length can
be zero or a positive number.

Depending on your application, the gating logic can arise from time-driven dynamics,
state-driven dynamics, a SimEvents block's statistical output signal, or a computation
involving various types of signals.

Sense an Entity Passing from A to B and Open a Gate

This example shows how to use the Sense an Entity Passing from A to B and
Open a Gate design pattern. In this example, the Step block generates a step signal at
time 4. This signal passes through the Message Send block A. The Entity Replicator
block duplicates the entity and passes it to B. It uses the original entity to trigger an
event-based entity to enable the Entity Gate block.

3 Routing Techniques

3-18

1 In a new model, drag the blocks shown in the example and relabel and connect them
as shown. For convenience, start with the Sense an Entity Passing from A to
B and Open a Gate design pattern.

2 In the Step block, set the Step time parameter to 4.
3 In the A (Message Send) block, select the Show enable port check box. Selecting

this check box lets the Step block signal enable the A block to send a message to the
Entity Replicator block.

4 In the Entity Generatorblock, in the Entity type tab:

a Name the entity type Entity.
b Add an attribute named Capacity with an initial value of 0.

5 In the Entity Queue block, in the Statistics tab, select Number of entities in
block, n.

6 Save and run the model. Observe the number of entities passing through the gate
and the number of entities in the queue at time 4.

 Enable a Gate for a Time Interval

3-19

Control Joint Availability of Two Servers

Suppose that each entity undergoes two processes, one at a time, and that the first
process does not start if the second process is still in progress for the previous entity.
Assume for this example that it is preferable to model the two processes using two Single
Server blocks in series rather than one Single Server block whose service time is the sum
of the two individual processing times; for example, you might find a two-block solution
more intuitive or you might want to access the two Single Server blocks' utilization
output signals independently in another part of the model.

If you connect a queue, a server, and another server in series, then the first server can
start serving a new entity while the second server is still serving the previous entity.

3 Routing Techniques

3-20

This does not accomplish the stated goal. The model needs a gate to prevent the first
server from accepting an entity too soon, that is, while the second server still holds the
previous entity.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity Replicator | Message
Send

Related Examples
• “Select Departure Path Using Entity Output Switch” on page 3-5
• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Combine Entity Paths” on page 3-10
• “Use Messages To Route Entities” on page 3-12

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Use Attributes to Route Entities” on page 3-15
• “Role of Gates in SimEvents Models” on page 3-16

 See Also

3-21

Work with Resources

• “Model with Resources” on page 4-2
• “Set Resource Amount with Attributes” on page 4-4

4

Model with Resources
In this section...
“Resource Blocks” on page 4-2
“Resource Creation Workflow” on page 4-2

Resource Blocks

For an introduction to resources, see “Entity Resources”. The SimEvents software
supplies the following resource allocation blocks:
Action Block
Acquire resource Resource Acquirer
Define resource Resource Pool
Release resource Resource Releaser

Resource Creation Workflow
1 Specify resources using the Resource Pool block. Define one resource per Resource

Pool block. Multiple Resource Pool blocks can exist in the model with multiple
entities sharing the resources.

2 Identify resources to be used with the Resource Acquirer block. You can identify
these resources before specifying them in a Resource Pool block, or select them from
the available resources list. However, the resource definitions must exist by the time
you simulate the model. Multiple Resource Acquire blocks can exist in the model.

3 To release resources, include one or more Resource Releaser blocks. You can
configure Resource Release blocks to release some or all resources for an entity.
Alternatively, you can release all resources for an entity directly using the Entity
Terminator block.

Tip To determine how long an entity holds a resource, insert a server block before the
Resource Acquire block. In the Service time parameter, enter how long you want the
entity to hold the resource.

An entity implicitly releases held resources when it:

4 Work with Resources

4-2

• Is destroyed.
• Enters an Entity Replicator block and the block creates multiple copies of that entity.
• Is combined with other entities using the Composite Entity Creator block.
• Is split into its component entities using the Composite Entity Splitter block.

See Also
Resource Acquirer | Resource Pool | Resource Releaser

 See Also

4-3

Set Resource Amount with Attributes
Use the Selected Resources table of the Resource Acquirer block to receive the
resource amount definition from the block dialog box or an entity attribute. Using
attributes as the source for the resource requires synchronicity between these blocks:

• Entity Generator block with the attribute definition that Resource Acquirer wants to
supply the source amount

• Resource Pool block that defines the resource
• Resource Acquirer block the acquires the resource

This example shows this synchronicity.

1 Open a new model and add Resource Pool, Entity Generator, and Resource Acquirer
blocks. For the Resource Pool block:

• Set Resource name to water.
• Set Resource amount to 20.
• In the Statistics tab, select Amount in use, #u.

2 In the Entity Generator block dialog box, click the Entity type tab and in the
Define attributes table:

• Enter the attribute name, water_amount, to indicate that the attribute defines
the amount of the resource.

• Set the value to 10.
3 In the Resource Acquirer block dialog box, click the Entity type tab and under

Available Resources, select water and move it to the Selected Resources table.
4 In the Selected Resources table, in the water entry:

• For Amount Source, select Attribute.
• For Amount, enter water_amount to match the attribute name defined in the

Entity Generator block.
5 To complete the model, add the following blocks and connect them as shown in the

figure:

• Entity Terminator (select the Statistics tab Number of entities arrived, #a
check box)

4 Work with Resources

4-4

• Two Scope blocks

6 Simulate the model and observe the amount of resources in use (Scope).

See Also
Resource Acquirer | Resource Pool | Resource Releaser

 See Also

4-5

Visualization, Statistics, and Animation

• “Use Statistics to Understand SimEvents Models” on page 5-2
• “Access Statistics from SimEvents Blocks” on page 5-5
• “Visualization and Animation” on page 5-8
• “Work with Sequence Viewer” on page 5-9

5

Use Statistics to Understand SimEvents Models

In this section...
“Statistics for Data Analysis” on page 5-2
“Statistics for Run-Time Control” on page 5-3
“Statistical Tools for Discrete-Event Simulation” on page 5-3

Statistics for Data Analysis

The purpose of creating a discrete-event simulation is often to improve understanding of
the underlying system or guide decisions about the underlying system. Numerical results
gathered during simulation can be important tools. For example:

• If you simulate the operation and maintenance of equipment on an assembly line, you
might use the computed production and defect rates to help decide whether to change
your maintenance schedule.

• If you simulate a communication bus under varying bus loads, you might use
computed average delays in high- or low-priority messages to help determine whether
a proposed architecture is viable.

When you design the statistical measures that you use to learn about the system,
consider these questions:

• Which statistics are meaningful for your investigation or decision? For example, if you
are trying to maximize efficiency, then what is an appropriate measure of efficiency in
your system? As another example, does a mean give the best performance measure for
your system, or is it also worthwhile to consider the proportion of samples in a given
interval?

• How can you compute the desired statistics? For example, do you need to ignore any
transient effects, does the choice of initial conditions matter, and what stopping
criteria are appropriate for the simulation?

• To ensure sufficient confidence in the result, how many simulation runs do you need?
One simulation run, no matter how long, is still a single sample and probably
inadequate for valid statistical analysis.

For details concerning statistical analysis and variance reduction techniques, see the
works [7], [4], [1], and [2].

5 Visualization, Statistics, and Animation

5-2

Statistics for Run-Time Control

Some systems rely on statistics to influence the dynamics. For example, a queuing
system with discouraged arrivals has a feedback loop that adjusts the arrival rate
throughout the simulation based on statistics reported by the queue and server.

When you create simulations that use statistical signals to control the dynamics, you
must have access to the current values of the statistics at key times throughout the
simulation, not just at the end of the simulation. Some questions to consider while
designing your model are:

• Which statistics are meaningful, and how should they influence the dynamics of the
system?

• How can you compute the desired statistics at the right times during the simulation?
It is important to understand when SimEvents blocks update each of their statistical
outputs and when other blocks can access the updated values.

• Will small perturbations result in large changes in the system behavior? When using
statistics to control the model, you might want to monitor those statistics or other
statistics to check whether the system is undesirably sensitive to perturbations.

Statistical Tools for Discrete-Event Simulation

The table lists components that SimEvents models commonly use to gather or compute
statistics.

Statistical Information Available Tools
Number of entities in a queue or server n output signal from queue and server blocks
Utilization of a server util output signal from Entity Server block
Number of entities that have departed
from a block

• d output signal from various SimEvents blocks
• Entity Generator
• Entity Server
• Entity Queue
• Multicast Receive Queue
• Resource Acquirer

 Use Statistics to Understand SimEvents Models

5-3

Statistical Information Available Tools
Pending entity present in block • pe output signal from various SimEvents blocks

• Entity Generator
• Entity Server

Number of entities arrived a output signal from Entity Terminator block
Average wait • w output signal from various SimEvents blocks

• Entity Queue
• Entity Server
• Resource Acquirer

Average intergeneration time w output signal from Entity Generator block
Average queue length l output signal from Entity Queue block
Number of pending entities np output signal from Entity Server block
Custom computation on event actions • Simulink Function

• MATLAB code

See Also
Entity Generator | Entity Queue | Entity Server | Entity Server | Entity Terminator |
Multicast Receive Queue | Resource Acquirer

Related Examples
• “Access Statistics from SimEvents Blocks” on page 5-5

More About
• “Statistics Through SimEvents Blocks”
• “Count Entities”
• “Visualization and Animation” on page 5-8

5 Visualization, Statistics, and Animation

5-4

Access Statistics from SimEvents Blocks
Most SimEvents blocks can produce one or more statistical output signals.

This procedure shows you how to access a statistical output signal for a given SimEvents
block.

 Access Statistics from SimEvents Blocks

5-5

1 Determine which statistical output signal you want to access and find the associated
parameter in the block dialog box. To see which statistics are available, open the
block dialog box. Usually, the list of available statistics appears as a list of
parameters on the Statistics tab of the dialog box. In cases where the dialog box has
no Statistics tab, the dialog box has so few parameters that the parameters
associated with statistics are straightforward to locate.

2 Select the check box. After you apply the change, the block has a new signal output
port corresponding to that statistic.

3 Connect the new signal output port to the signal input port of another block. The
table lists some common examples.

Note Use scopes and other observer blocks to observe individual statistic ports.
However, you cannot use the same scope to observe multiple statistics ports nor use
a Scope Viewer for a statistics port. To observe multiple statistic ports, consider
using a dashboard or the Simulation Data Inspector.

If You Want to... Use this Block...
Create a plot using the statistic. Simulink Scope or dashboard
Show the statistic on the block icon
throughout the simulation.

Simulation Data Inspector or Display

Write the data set to the MATLAB
workspace when the simulation stops or
pauses. To learn more, see “Save
Simulation Data” on page 7-4.

Signal logging or To Workspace. In
addition, you can also log signals
observed using scopes and Simulation
Data Inspector to the workspace.

Perform custom data processing. See
“Derive Custom Statistics” on page 5-6
for some suggestions.

Custom subsystem or computational
block

Derive Custom Statistics

You can use the built-in statistical signals from SimEvents blocks to derive more
specialized or complex statistics that are meaningful in your model. One approach is to
compute statistics during the simulation. You can implement your computations using a
graphical block-diagram approach or a nongraphical coded approach. Alternatively, you
can compute statistics using MATLAB code after the simulation is complete.

5 Visualization, Statistics, and Animation

5-6

See Also
Entity Generator | Entity Queue | Entity Server | Entity Server | Entity Terminator |
Multicast Receive Queue | Resource Acquirer

Related Examples
• “Access Statistics from SimEvents Blocks” on page 5-5

More About
• “Statistics Through SimEvents Blocks”
• “Use Statistics to Understand SimEvents Models” on page 5-2
• “Count Entities”
• “Visualization and Animation” on page 5-8

 See Also

5-7

Visualization and Animation
Visualize and animate simulations in SimEvents models using tools available in
Simulink and SimEvents software.

• You can place many Simulink Sink blocks directly on the entity line to observe
entities, including the To Workspace and dashboard scopes.

• If the entity type is anonymous, you can place a Scope block.
• To observe bus or structured type entities, use the Simulation Data Inspector or

dashboard scopes. The Scope and Display blocks do not support buses.

See Also
Entity Generator | Entity Queue | Entity Server | Entity Server | Entity Terminator |
Multicast Receive Queue | Resource Acquirer

Related Examples
• “Access Statistics from SimEvents Blocks” on page 5-5
• “Visualize and Animate Simulations”

More About
• “Statistics Through SimEvents Blocks”
• “Count Entities”

5 Visualization, Statistics, and Animation

5-8

Work with Sequence Viewer
The Sequence Viewer window has:

• A navigation toolbar, which contains:

• The model hierarchy path
• Toggle button to select an automatic or manual layout
• Toggle button to choose to show or hide inactive lifelines
• Buttons for saving and restoring information in the viewer, setting parameters on

the block, and accessing the Sequence Viewer documentation
• A header pane, which contains the lifeline headers.
• A message pane, which displays the messages.

To see the interchange of messages between Stateflow charts during simulation, add a
Sequence Viewer block to the model. You can visualize the movement of entities between
blocks when simulating SimEvents models. The Sequence Viewer block also displays
function calls and calls from MATLAB Function blocks. For more information on function
calls, see “Function Calls in Sequence Viewer” on page 5-18.

The Sequence Viewer block uses a Sequence Viewer window that acts like a sequence
diagram showing how blocks interact using messages.

The Sequence Viewer enables you to view event data related to Stateflow chart execution
and the exchange of messages between Stateflow charts. The Sequence Viewer shows
where messages are created and sent, forwarded, received, and destroyed at different
times during model execution. You can also view the movement of entities between
SimEvents blocks. All SimEvents blocks that can store entities appear as lifelines on the
Sequence Viewer. Entities moving between these blocks appear as lines with arrows. The
Sequence Viewer also enables you to view calls to Simulink Function blocks and
Stateflow MATLAB functions.

This topic uses the Stateflow example sf_msg_traffic_light to show you how to use
the Sequence Viewer.

You can add one or more Sequence Viewer blocks to the top level of a model or any
subsystem. If you place a Sequence Viewer block in a subsystem that does not have
messages, the Sequence Viewer informs you that no messages are available to display. A
viewer can be inactive if, for example, it is in a subsystem that has been commented out.
In such a case, the Sequence Viewer displays that it is inactive.

 Work with Sequence Viewer

5-9

matlab:sf_msg_traffic_light

Visualize Messages

Consider this subsystem, Traffic Light1:

5 Visualization, Statistics, and Animation

5-10

Traffic Light1 contains two Stateflow charts.

• Controller
• Ped Button Sensor

The charts in this subsystems use messages to exchange data. As messages pass through
the system, you can view them in a Sequence Viewer.

Add a Sequence Viewer block to a subsystem or model whose messages you want to see.
When you open a Sequence Viewer block and simulate the model:

1 Observe the contents of the Sequence Viewer.

 Work with Sequence Viewer

5-11

The header (top) pane of a Sequence Viewer shows the lifeline headers. In this
example, the lifelines are the two Traffic Light blocks and the GUI. Lifeline headers
show the name of the corresponding blocks in the model that generate or act on
messages. The top of the lifeline is a header, which corresponds to a block in the
model. Gray headers with straight edges correspond to subsystems. Yellow headers
with rounded edges correspond to Stateflow charts. In the header pane, the lifeline
hierarchy corresponds to the model hierarchy. When the model is paused or stopped,
you can expand and close lifelines.

In the message pane, a thick gray lifeline indicates that you can expand the lifeline
to see the children in the lifeline. Clicking a lifeline name opens the corresponding
block in the model.

Messages between lifelines display in the message pane. Message lines are arrows
from the sender to the receiver. For more information on navigation in the message
page, see “Navigation in Sequence Viewers” on page 5-18.

5 Visualization, Statistics, and Animation

5-12

2 To show the children of a lifeline, click the expander under a parent lifeline .

3 Lifelines are hidden by double-clicking their headers.
4 Make a lifeline the root of focus for the viewer. Hover over the bottom left corner of

the lifeline header and click the arrow. Alternatively, use the navigation toolbar at
the top of a Sequence Viewer. The Sequence Viewer displays the current root lifeline
path and shows its child lifelines.

 Work with Sequence Viewer

5-13

Any external sending and receiving events display as vertical bars (slots) in the

diagram gutter . To highlight the associated block in the model, click the relevant
slot.

5 Visualization, Statistics, and Animation

5-14

You can use the navigation toolbar to move the current root up and down the lifeline
hierarchy. To move up the current root one level, hit the Esc key.

This graphic also illustrates how the Sequence Viewer displays masked subsystems.
The Traffic Lamp 1, Ped Lamp 1, Traffic Lamp 2, and PED Lamp 2 are masked
subsystems. The Sequence Viewer displays masked subsystems as white blocks.

5 To show the children of a masked subsystem, hover over the bottom left corner of the
masked and subsystem and click the arrow.

The child lifeline displays.

6 Activations, which correspond to executions of the lifeline, are at the start and end of
each message line.

If a message line is not completely shown, hover over the line. You can also, hover
over a truncated message label to see it in its entirety. In this example, the send
time of the commIn message line is not visible. To see it, hover over the message
line.

If you hover over an activation that represents a function call, the function prototype
is displayed in the tool tip.

If you hover over partially shown activation symbols, the times for any truncated
activations also appear.

 Work with Sequence Viewer

5-15

7 A Sequence Viewer shows the interactions (hops) that a message or function call
goes through in its lifetime. It also shows message and function call payloads. To
highlight the hops for a message or function call and display its payload, click the
corresponding message line. See the result in the payload inspector to the right. Use
Search Up and Down buttons to move through the hops.

Redisplay of Information in Sequence Viewer
A Sequence Viewer block saves the order and states of lifelines between simulation runs.
Similarly, when you close and reopen a Sequence Viewer, it preserves the last open
lifeline state. To save a particular viewer state with the block, click in the navigation

5 Visualization, Statistics, and Animation

5-16

toolbar. Saving the model then saves that state information across sessions. Use to
load the saved settings.

Time in Sequence Viewers

A Sequence Viewer shows message events vertically, ordered in time. Multiple events in
Simulink can happen at the same time. Conversely, there can be long periods of times
during simulation with no events. As a consequence, time in the message pane is
nonlinear. Each time grid row, bordered by two blue lines, contains events that occur at
the same simulation time. The time strip gives the times of the events in that grid row.

The time ruler shows linear simulation time. To show messages in that simulation time
range, use the scroll wheel or drag the time slider up and down the time ruler.

Time Ruler

Time Grid

Time Strip

Time Slider

• To navigate to the beginning and end of the simulation, click the Go to first event
and Go to last event buttons.

• To zoom the ruler, hold the space bar and use the mouse wheel. This action increases
and decreases the amount of time ruler space the slider occupies.

• To see the entire simulation duration on the time ruler, click the Fit to view button
.

• To reset the zoom to 100%, hold Ctrl + 0.

 Work with Sequence Viewer

5-17

Navigation in Sequence Viewers

To scroll in the header and message panes, use the mouse wheel. In addition,

• The header pane has a vertical scroll bar.
• The message page has a horizontal scroll bar at the bottom that scrolls both panes.

To pan in the message pane, move the mouse while holding down either the middle
mouse button or space bar. This action moves both panes.

You can scale the view in two ways:

• Fit all lifeline headers to window — Press the space bar.
• Zoom by a fixed increment to a predefined minimum or maximum value — Press

Ctrl- or Ctrl+. Alternatively, hold the space bar and use the mouse wheel.

Zooming does not scale the navigation toolbar or time ruler.

Function Calls in Sequence Viewer

The Sequence Viewer block displays these function calls and replies to them.
Function Call Type Support
Calls to Simulink Function blocks Fully supported
Calls to Stateflow graphical or Stateflow
MATLAB functions

• Scoped — Select the Export chart
level functions chart option. Use the
chartName.functionName dot
notation.

• Global — Select the Treat exported
functions as globally visible chart
option. You do not need the dot
notation.

The Sequence Viewer block does not display these function calls:

• Function calls connected to function-call subsystems.

For an example of functions calls in Sequence Viewer, see slexPrinterExample. The
Sequence Viewer displays function calls with solid lines terminated with solid arrows
and a label with the format function_name(argument_list). Replies to function calls

5 Visualization, Statistics, and Animation

5-18

matlab:slexPrinterExample

display as dashed lines with open arrows and a label with the format
[argument_list]=function_name.

See Also
Sequence Viewer | Sequence Viewer | Sequence Viewer

More About
• “How Messages Work in Stateflow Charts” (Stateflow)

 See Also

5-19

Learning More About SimEvents
Software

• “Event Calendar” on page 6-2
• “Entity Priorities” on page 6-3
• “Livelock Prevention” on page 6-5
• “Storage and Nonstorage Blocks” on page 6-6

6

Event Calendar
During a simulation, the model maintains a list, called the event calendar, of upcoming
events that are scheduled for the current simulation time or future times. The event
calendar sorts multiple events that are scheduled for the same time by the priority of the
entity for which they are scheduled. The model refers to the event calendar to execute
events at the correct simulation time and in an appropriately prioritized sequence.

These are the events that the event calendar tracks.
Event For Blocks
Generate Entity Generator, MATLAB Discrete-Event System
Forward Entity Generator, Entity Queue, Multicast Receive Queue,

Entity Server, Entity Terminator, Discrete Event Chart,
MATLAB Discrete Event System, Entity Replicator, Resource
Acquirer

ServiceComplete Entity Server
Timer MATLAB Discrete-Event System, Discrete Event Chart
Iterate MATLAB Discrete-Event System
Destroy MATLAB Discrete-Event System

See Also
Discrete Event Chart | Entity Generator | Entity Queue | Entity Replicator | Entity
Server | Entity Terminator | MATLAB Discrete Event System | Multicast Receive
Queue | Resource Acquirer

6 Learning More About SimEvents Software

6-2

Entity Priorities
SimEvents software uses entity priorities to prioritize events. The smaller the priority
value, the higher the priority.

You specify entity priorities when you generate entities. You can later change entity
priorities using an event action for the priority. For example, in the Entity Generator
Event actions tab, you can define an event action to change the entity priority during
simulation using code such as:

entitySys.priority=MATLAB code

The event calendar includes event types such as:

• Entity generation
• Entity forwarding
• Entity destruction
• Timer
• Service completion

The event calendar sorts events based on times and associated entity priorities as
outlined here:

1 The event that has the earliest time executes first.
2 If two entities have events occurring at the same time, the event with the entity of

higher priority occurs first.
3 If both entities have the same priority, it is undefined which event is served first. To

get deterministic order, change one of the entity priorities.

For example, assume a forward event associated with an entity that exits block A and
enters block B. The priority of this event is the priority of the entity being forwarded. If
there are two entities trying to depart a block at the same time, the entity with the
higher priority departs first.

See Also
Discrete Event Chart | Entity Generator | Entity Queue | Entity Replicator | Entity
Server | Entity Terminator | MATLAB Discrete Event System | Multicast Receive
Queue | Resource Acquirer

 Entity Priorities

6-3

Related Examples
• “Sort by Priority” on page 2-6

6 Learning More About SimEvents Software

6-4

Livelock Prevention

Large Finite Numbers of Simultaneous Events

Simultaneous events are events that occur at the same simulation clock time. If your
simulation creates an large number of simultaneous events, this number might be an
indication of an unwanted livelock situation. In this situation, a block returns to the
same state infinitely often at the same time instant. SimEvents software prevents
livelock with these limits:

• SimEvents software limits the maximum number of simultaneous events per block to
5,000.

• SimEvents software limits the maximum number of simultaneous events per model to
100,000.

See Also

More About
• “Information About Race Conditions and Random Times”

 Livelock Prevention

6-5

Storage and Nonstorage Blocks
In this section...
“Storage Blocks” on page 6-6
“Nonstorage Blocks” on page 6-6

Storage Blocks

These blocks are capable of holding an entity:

• Entity Generator
• Entity Queue
• Multicast Receive Queue
• Entity Server
• Entity Terminator
• Discrete Event Chart
• MATLAB Discrete Event System
• Entity Replicator
• Resource Acquirer

Nonstorage Blocks

These blocks permit an entity arrival but must output or destroy the entity at the same
value of the simulation clock:

• Entity Input Switch
• Entity Output Switch
• Entity Multicast
• Entity Gate
• Composite Entity Creator
• Composite Entity Splitter
• Resource Releaser
• Resource Pool

6 Learning More About SimEvents Software

6-6

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event Chart | Entity
Gate | Entity Generator | Entity Input Switch | Entity Multicast | Entity Output
Switch | Entity Queue | Entity Replicator | Entity Server | Entity Terminator |
MATLAB Discrete Event System | Multicast Receive Queue | Resource Acquirer |
Resource Pool | Resource Releaser

 See Also

6-7

Working with Simulink

• “Exchange Data Between SimEvents and Simulink” on page 7-2
• “Time-Based Signals and SimEvents Block Transitions” on page 7-3
• “Save Simulation Data” on page 7-4
• “Solvers for Discrete-Event Systems” on page 7-6
• “SimEvents Support for Simulink Subsystems” on page 7-9

7

Exchange Data Between SimEvents and Simulink
Use Simulink Function blocks in SimEvents models:

• To read or write attributes of entities.
• To send messages that trigger other events.
• To exchange data between event and time domain sections of a model.

Use the Message Send and Message Receive blocks to send and receive messages
between Simulink and SimEvents blocks.

See Also
Message Receive | Message Send | Simulink Function

Related Examples
• “Events and Event Actions” on page 1-5
• “Generate Entities When Events Occur” on page 1-11

More About
• “What Is an Event?”

7 Working with Simulink

7-2

Time-Based Signals and SimEvents Block Transitions

When Signals Transition

Time-based signals and SimEvents signals have different characteristics. Here are some
indications that a time-based signal will be automatically converted into a SimEvents
signal, or vice versa:

• You want to connect a time-based signal to an input port of a SimEvents block.
• You are using data from a SimEvents block to affect time-based dynamics.
• You want to perform a computation involving both time-based signals and SimEvents

output.

When the transition occurs, a capital E appears on the line.

See Also

More About
• “What Is an Entity?”

 Time-Based Signals and SimEvents Block Transitions

7-3

Save Simulation Data

In this section...
“Behavior of the To Workspace Block” on page 7-4
“Send Queue Length to the Workspace” on page 7-4
“Data Logging” on page 7-4

Behavior of the To Workspace Block

The To Workspace block writes event-based signals to the MATLAB workspace when the
simulation stops or pauses. One way to pause a running simulation is to select
Simulation > Pause.

Send Queue Length to the Workspace

The example shows one way to write the times and values of signals to the MATLAB
workspace. In this case, the signal is the n output from an Entity Queue block, which
indicates how many entities the queue holds.

You can use different time formats in the To Workspace block to display the data.

To record entities and their attributes passing along an entity line, consider connecting a
To Workspace block to that entity line.

Data Logging

You can log data from your SimEvents model using Simulink. For more information, see
“Save Runtime Data from Simulation” (Simulink).

7 Working with Simulink

7-4

See Also
“Save Runtime Data from Simulation” (Simulink) | To Workspace

 See Also

7-5

Solvers for Discrete-Event Systems
In this section...
“Variable-Step Solvers for Discrete-Event Systems” on page 7-6
“Fixed-Step Solvers for Discrete-Event Systems” on page 7-7

Depending on your configuration, you can use both variable-step and fixed-step solvers
with discrete-event systems. To choose solver settings for your model, navigate to the
Solver pane of the model Configuration Parameters dialog box.

When choosing a solver type for your model, use the following guidelines:

• If your model contains only event-based computation and excludes continuous and
discrete time-based computation, choose the variable-step, discrete solver. In this
case, if you select a variable-step continuous solver, the software detects that your
model does not contain any blocks with continuous states (Simulink blocks) and
automatically switches the solver to discrete (no continuous states). When
the software makes this change, it notifies you with a message in the MATLAB
command window.

• If your discrete-event system is within a Simulink model that also contains time-
based modeling, choose either a variable-step or fixed-step solver, depending on your
simulation requirements. For each solver type, the following sections describe the
behavior of discrete-event systems when contained within such models.

Variable-Step Solvers for Discrete-Event Systems

If your discrete-event system is within a Simulink model that contains time-based
modeling, and you choose a variable-step solver for the model, the Simulink solver has a
major time step each time the discrete-event system needs to process events.

The following graphic illustrates the behavior of the variable-step solver when used with
a discrete-event system contained within a Simulink model.

7 Working with Simulink

7-6

Fixed-Step Solvers for Discrete-Event Systems

If you have a discrete-event system within a Simulink model that includes time-based
modeling, you can choose a fixed-step solver for the model.

When you use a fixed-step solver, the simulation still executes events in the discrete-
event system at the times at which they occur. However, these events do not cause the
Simulink solver to have sample hits at those times. The software insulates the discrete-
event system from the time-based portions of the Simulink model.

The following graphic illustrates the behavior of the fixed-step solver when used with a
discrete-event system.

 Solvers for Discrete-Event Systems

7-7

See Also

More About
• “Solvers” (Simulink)

7 Working with Simulink

7-8

SimEvents Support for Simulink Subsystems
You can use SimEvents blocks (discrete-event blocks) without restriction in Simulink
Virtual Subsystems, and in Simulink Nonvirtual Subsystems, observing some specific
guidelines.

For more information about Simulink subsystems, see “Systems and Subsystems”
(Simulink).

Discrete-Event Blocks in Virtual Subsystems

You can use discrete-event blocks without restriction in a virtual subsystem.

Discrete-Event Blocks in Nonvirtual Subsystems

For more information about atomic subsystems, see Subsystem, Atomic Subsystem,
Nonvirtual Subsystem, CodeReuse Subsystem.

When you use discrete-event blocks in an atomic subsystem, follow these guidelines:

• The entire discrete-event subsystem, which includes all discrete-event blocks, must
reside entirely within the atomic subsystem. You cannot route entities into, or out of,
the atomic subsystem.

• If you want to connect two or more atomic subsystems that contain discrete-event
blocks, each atomic subsystem must meet all the preceding conditions.

Discrete-Event Blocks in Variant Subsystems

You can use discrete-event blocks in a variant subsystem. The software permits both
entities and time-based signals to enter and depart a virtual variant.

However, if you use an atomic subsystem as a variant, or within a variant, then that
atomic subsystem must obey the rules for using discrete-event blocks in nonvirtual
subsystems. These rules are described in “Discrete-Event Blocks in Nonvirtual
Subsystems” on page 7-9. An atomic subsystem is the only type of nonvirtual subsystem
that can contain discrete-event blocks, even when the nonvirtual subsystem is contained
within a variant subsystem.

 SimEvents Support for Simulink Subsystems

7-9

Variant System Support

The SimEvents software does not support the selection of the Analyze all choices
during update diagram and generate preprocessor conditionals check box for
these blocks:

• Variant Subsystem
• Variant Sink
• Variant Source

See Also
Atomic Subsystem | CodeReuse Subsystem | Nonvirtual Subsystem | Subsystem |
Variant Source | Variant Sink | Variant Subsystem

More About
• “Systems and Subsystems” (Simulink)

7 Working with Simulink

7-10

Build Discrete-Event Systems Using
Charts

• “Discrete-Event Systems Created with Stateflow Charts” on page 8-2
• “How Discrete-Event Charts Differ from Stateflow Charts” on page 8-3
• “Event Triggering in Discrete-Event Charts” on page 8-5

8

Discrete-Event Systems Created with Stateflow Charts

Why Use the Discrete Event Chart

A Stateflow discrete-event chart can receive, process, and send SimEvents entities. Using
Stateflow discrete-event charts to create SimEvents systems lets you take advantage of:

• Graphical state transition and MATLAB action language used in Stateflow software
• Precise timing for temporal events arrival
• Triggering on message
• Dynamic event scheduling

Note With SimEvents and its required software, you can view, edit, and simulate your
Discrete Event Chart custom block within a SimEvents example model. However, to save
the model you must have a Stateflow license.

For new models, without a Stateflow license, you can view and edit the model, but cannot
simulate or save it.

The entities you use with discrete-event charts can be bus objects or anonymous entities.

See Also
Discrete Event Chart

Related Examples
• “Specify Chart Properties” (Stateflow)

More About
• “How Discrete-Event Charts Differ from Stateflow Charts” on page 8-3
• “Event Triggering in Discrete-Event Charts” on page 8-5

8 Build Discrete-Event Systems Using Charts

8-2

How Discrete-Event Charts Differ from Stateflow Charts

In this section...
“Discrete Event Chart Properties” on page 8-3
“Define Message (Entity) Input and Output” on page 8-4
“Define Local Messages” on page 8-4
“Specify Message Properties” on page 8-4

Discrete Event Chart Properties

Discrete event chart properties allow you to specify how your chart interfaces with the
Simulink model.

Set Properties for a Chart

To specify properties for a single chart:

1 Double-click a chart.
2 Right-click an open area of the chart and select Properties.

All charts provide general and documentation properties.
3 Observe that the chart allows the configuration of only these properties on the

General tab. It also supports the Fixed-point properties and Documentation
tabs.

• Name
• Machine
• Saturate on integer overflow
• Create data for monitoring
• Lock Editor

Notes:

• SimEvents software supports only MATLAB action language
• SimEvents always supports variable-size arrays

 How Discrete-Event Charts Differ from Stateflow Charts

8-3

Define Message (Entity) Input and Output

A discrete-event chart uses SimEvents entities the same way that Stateflow software
uses messages. As with Stateflow charts, you can add message (entity) input and output
using the Stateflow Editor or Model Explorer. Based on the desired scope, select one of
the following options:
Scope Menu Option
Input Message (Entity) Input from Simulink
Output Message (Entity) Output from

Simulink

Define Local Messages

As with Stateflow charts, you can define local messages for the discrete-event chart using
the Stateflow Editor or Model Explorer. To add a local message for the discrete-event
chart, select Chart > Add Other Elements > Local Message (Entity)....

Specify Message Properties

Discrete-event charts have this additional property for output messages and local
messages:
Message Input Port
Properties

Description

Priority If two message events occur at the same time, to decide which
to process first, the discrete-event chart uses this priority. A
smaller numeric value indicates a higher priority.

See Also
Discrete Event Chart

More About
• “Discrete-Event Systems Created with Stateflow Charts” on page 8-2
• “Event Triggering in Discrete-Event Charts” on page 8-5

8 Build Discrete-Event Systems Using Charts

8-4

Event Triggering in Discrete-Event Charts
In this section...
“Event Triggering” on page 8-5
“Message Triggering” on page 8-5
“Temporal Triggering” on page 8-6

Event Triggering

SimEvents discrete-event system charts support these events in the chart:

• Message
• Temporal
• Local
• Implicit (enter, exit, on, change)

SimEvents discrete-event system charts do not support these events in the chart:

• Conditions without event
• during, tick
• Event input from Simulink
• Event output to Simulink

Note The SimEvents event calendar displays and prioritizes message, and temporal
events. Events of these types execute according to the event calendar schedule.

The event calendar does not display or prioritize local and implicit events. In the
SimEvents environment, these events execute as dependent events of message or
temporal events. For parallel states, local and implicit events execute in the state
execution order.

Message Triggering

When a message arrives at a message input or local queue, the discrete-event chart
responds to the message as follows:

 Event Triggering in Discrete-Event Charts

8-5

• If the discrete-event chart is in a state of waiting for a message, the discrete-event
chart wakes up and makes possible transitions. The chart immediately wakes up in
order of message priority, processing the message with the highest priority first.

• If the discrete-event chart does not need to respond to the arriving message, the
discrete-event chart does not wake up and the message is queued.

Temporal Triggering

In a discrete-event chart, you can use both event-based and absolute time-based
temporal logic operators. When using absolute time-based temporal logic operators, the
SimEvents software honors the specified time delay value exactly. For example, the
activation of the temporal logic 'after(3,sec)' causes the chart to wake up after three
seconds of simulation clock time.

When using absolute-time temporal logic operators, observe these differences from the
Stateflow environment.
Operator Description
after You can use as event notation in both state

actions and transitions.

8 Build Discrete-Event Systems Using Charts

8-6

Operator Description
before When you use as event notation of a

transition, you cannot use additional
condition notations on this transition. You
can apply a connective junction to check
additional conditions, as long as the
connective junction has one unconditional
transition.

In conditional notation, the software supports both after and before.

See Also
Discrete Event Chart

More About
• “Discrete-Event Systems Created with Stateflow Charts” on page 8-2
• “How Discrete-Event Charts Differ from Stateflow Charts” on page 8-3

 See Also

8-7

Build Discrete-Event Systems Using
System Objects

• “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2
• “Use a MATLAB Discrete-Event System Block” on page 9-14
• “Implement a Discrete-Event System Object” on page 9-16
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-19
• “Custom Entity Types, Ports, and Storage” on page 9-24
• “Work with Events” on page 9-27

9

Create Custom Blocks Using MATLAB Discrete-Event System
Block

In this section...
“Why Use the MATLAB Discrete-Event System Block” on page 9-2
“Discrete System Framework” on page 9-3
“Create a Custom Entity Server Block” on page 9-8
“Create the Model” on page 9-8
“Write Code for Custom Entity Server” on page 9-11

Why Use the MATLAB Discrete-Event System Block

System objects let you implement custom event-driven entity-flow systems using the
MATLAB language. The MATLAB Discrete-Event System block enables you to use
System objects to create this custom block for SimEvents models. You can author such
discrete-event systems via a set of MATLAB methods.

You can create a custom discrete-event system from scratch that:

• Contains multiple entity storage elements, with each storage element containing
multiple SimEvents entities, and configure it to sort entities in a particular order.

• Has an entity or a storage element that can schedule and execute multiple types of
events. These events can model activities such as entity creation, consumption,
search, transmission (send/receive), and temporal delay.

• Can accept entity/signal as input/output, produce entity and signal as outputs, and
support both built-in data types and structured/bus data types.

• Utilize MATLAB toolboxes for computation and scaling of complex systems.

The MATLAB Discrete-Event System block is similar to the MATLAB System block with
the following exceptions:

• The resulting System object is an instantiation of the
matlab.DiscreteEventSystem class rather than the matlab.System class.

• The matlab.DiscreteEventSystem has its own set of System object methods
particular to discrete-event systems. For a complete list, see

9 Build Discrete-Event Systems Using System Objects

9-2

matlab.DiscreteEventSystem. Use these methods to define static properties or
define the behavior of objects.

• The matlab.DiscreteEventSystem also inherits a subset of the MATLAB System
methods. For a complete list of this subset, see matlab.DiscreteEventSystem.

Discrete System Framework

Starting with a blank canvas, MATLAB discrete System objects provide a framework to
illustrate the behavior of your discrete-event system.

 Create Custom Blocks Using MATLAB Discrete-Event System Block

9-3

In a discrete-event system, an entity is a discrete object that the system processes. An
entity has a type. An entity type defines a class of entities that share a common set of
data specifications and run-time methods. Examples of data specifications include
dimensions, data type, and complexity.

Consider these guidelines when defining custom entity types using the
getEntityTypesImpl method:

• You can specify multiple entity types in one discrete-event system. Each type must
have a unique name.

• An entity storage element, input port, and output port must specify the entity type
they work with.

9 Build Discrete-Event Systems Using System Objects

9-4

• Specify or resolve common data specifications for an entity type. For example, an
input port and an output port with the same entity type must have the same data
type.

• When forwarding an entity, the source and destination data specifications must be
same in these instances:

• From an input port to a storage element
• Between storage elements
• From a storage element to an output port

During simulation, an entity always occupies a unit of storage space. Such storage spaces
are provided by entity storage elements. A MATLAB discrete-event system can contain
multiple entity storage elements. Use the getEntityStorageImpl method to specify
storage elements. A storage space is a container with these properties:

 Create Custom Blocks Using MATLAB Discrete-Event System Block

9-5

• Entity type — Entity type this storage is handling.
• Capacity — Maximum number of entities that the storage can contain.
• Storage type — Criteria to sort storage entities (FIFO, LIFO, and priority).
• Key name — An attribute name used as key name for sorting. This property is

applicable only when the storage type is priority.
• Sorting direction — Ascending or descending priority queues. This property is

applicable only when the storage type is priority.

Ports enable a discrete-event system to exchange entities and data with other blocks or
systems. A MATLAB discrete-event system supports a variable number of input and
output ports using the getNumInputsImpl and getNumOutputsImpl methods. You can
also specify which ports are entity ports and the entity types for these ports. Use the
getEntityPortsImpl method to specify these port properties.

9 Build Discrete-Event Systems Using System Objects

9-6

You can schedule events for a discrete-event system to execute. Events are associated
with user-defined actions. An event action defines how the system behaves by changing
state or entity values, and executing the next events of the system.

A MATLAB discrete-event system can have these types of events:

• Storage events — Schedule these events on a storage element. The actor is a storage
element.

• Generate a new entity inside a storage element.
• Iterate each entity of a storage element.

• Entity events — Schedule these events on an entity. Actor is an entity.

• Delay an entity.

 Create Custom Blocks Using MATLAB Discrete-Event System Block

9-7

• Forward an entity from its current storage to another storage or output port.
• Destroy the existing entity of a storage element.

A MATLAB discrete-event system provides methods and functions to:

• Schedule events
• Define event actions in response to events
• Initialize events
• Cancel events

Create a Custom Entity Server Block

In this example, you create a custom entity server block. The server block has five
servers. The servers serve entities, at entry of the block, for one second. The server
outputs each entity through the output port.

Create the Model

Implement a block and assign a System object to it.

1 Open a new model and add the MATLAB Discrete-Event System block from the
SimEvents library.

2 In the block dialog box, from the New list, select Basic if you want to create a
System object from a template. Modify the template as needed and save the System
object.

9 Build Discrete-Event Systems Using System Objects

9-8

3 If the System object exists, enter its name in the Discrete-event System object
name. Click the list arrow. If valid System objects exist in the current folder, the
names appear in the list.

The MATLAB Discrete-Event System block icon and port labels update to the icons
and labels of the corresponding System object. For example, suppose that you select
a System object named desCustomServer in your current folder. The block updates
as shown.

You can define Discrete-Event System objects from the MATLAB Editor using code
insertion options.

 Create Custom Blocks Using MATLAB Discrete-Event System Block

9-9

A template is provided. By selecting Insert Property or Insert Method, the MATLAB
Editor adds predefined properties, methods, states, inputs, or outputs to your System
object.

classdef Untitled3 < matlab.DiscreteEventSystem
 % Untitled3 Add summary here
 %
 % This template includes the minimum set of functions required
 % to define a Discrete Event System object.

 % Public, tunable properties
 properties

 end

 properties(DiscreteState)

 end

 % Pre-computed constants
 properties(Access = private)

 end

 % Discrete-event algorithms
 methods
 function [entity,events] = entry(obj,storage,entity,source)
 % Specify event actions when entity enters storage
 events = [];
 end
 end

 methods(Access = protected)
 function setupImpl(obj)
 % Perform one-time calculations, such as computing constants
 end

 function resetImpl(obj)
 % Initialize / reset discrete-state properties
 end
 end
end

9 Build Discrete-Event Systems Using System Objects

9-10

Use these tools to create and modify System objects faster, and to increase accuracy by
reducing typing errors. You can access the System object editing options through the
MATLAB Editor toolbar.

Write Code for Custom Entity Server

To create your custom entity server, you modify the template code as follows:

1 Edit the Base MATLAB Object. To simulate your customer entity server, your
MATLAB System Object inherits matlab.DiscreteEventSystem .

2 Add parameters. The parameters capture the properties of your server such as the
number of servers and how long they service an entity.

• Tunable parameters are parameters that can be tuned during run time. For your
entity server, the service time is tunable.

• Nontunable parameters are parameters that cannot be tuned during run time.
For your entity server, the number of servers or capacity is nontunable.

3 Add methods

• The storage method defines how your custom entity server stores and sorts the
entities. MATLAB System Object provides the function
getEntityStorageImpl(obj), which allows you to specify storage
specifications and define the inputs and outputs for your entity server.

• MATLAB System Object provides the function:entry(obj, storage,
entity, from) and obj.eventForward('output', 1,
obj.ServiceTime). With these functions you define service at entry, implement
service time, and output the entity through an output port.

Your final MATLAB System Object code looks like:

classdef myServer < matlab.DiscreteEventSystem
 % Custom entity server with capacity and service time
 % as parameters

 properties (Nontunable)
 % Number of servers
 Capacity = 5;
 end

 properties
 % Service time

 Create Custom Blocks Using MATLAB Discrete-Event System Block

9-11

 ServiceTime = 1.0;
 end

 methods (Access=protected)

 function entityTypes = getEntityTypesImpl(obj)
 % Specify entity type
 entityTypes = obj.entityType('myType');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 % Specify entity type at input and output ports
 inputTypes = {'myType'};
 outputTypes = {'myType'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 % Specify storage with capacity from a parameter.
 % Connect the
 % storage to both input and output port.
 storageSpecs = obj.queueFIFO('myType', obj.Capacity);
 I = 1;
 O = 1;
 end

 end
 methods
 function [entity, events] = entry(obj, storage, entity, from)
 % Forward incoming entity to output port after service
 % completes
 events = obj.eventForward('output', 1, obj.ServiceTime);
 end
 end
end

Many different MATLAB System Object functions allow you to capture the properties
and behaviors of your unique discrete-event system. The model in this example is
simplified, but you can add complexity by editing event actions, introducing actions, and
modifying parameters. The object-oriented programming features of MATLAB System
object enable you to scale your system, and interface it with the graphical programming
features of SimEvents.

For examples of MATLAB Discrete-Event System and System objects, type SimEvents
Examples in the SimEvents Help browser.

9 Build Discrete-Event Systems Using System Objects

9-12

matlab:demo simulink simevents
matlab:demo simulink simevents

In addition, in the SimEvents library, double-click the Design Patterns block. The
MATLAB Discrete-Event System category contains these discrete-event system
design patterns:

Example Application
Custom Generator Implement a more complicated entity generator.
Selection Queue Select a specific entity to output from a queue.

See Also
matlab.DiscreteEventSystem | matlab.System

Related Examples
• “Use a MATLAB Discrete-Event System Block” on page 9-14

More About
• “System Object Integration” (Simulink)
• “Implement a Discrete-Event System Object” on page 9-16
• “Custom Entity Types, Ports, and Storage” on page 9-24
• “Work with Events” on page 9-27

 See Also

9-13

Use a MATLAB Discrete-Event System Block
Implement a block and assign a System object to it. You can then explore the block to see
the effect.

1 Create a model and add the MATLAB Discrete-Event System block from the
SimEvents library.

2 In the block dialog box, from the New list, select Basic if you want to create a
System object from a template. Modify the template according to your needs and
save the System object.

3 If the System object exists, enter its name in the Discrete-event System object
name. Click the list arrow. If valid System objects exist in the current folder, the
names appear in the list.

The MATLAB Discrete-Event System block icon and port labels update to the icons
and labels of the corresponding System object. For example, suppose that you
selected a System object named desCustomServer in your current folder. The block
updates as shown in the figure:

See Also
matlab.DiscreteEventSystem | matlab.System

More About
• “System Object Integration” (Simulink)
• “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2
• “Implement a Discrete-Event System Object” on page 9-16

9 Build Discrete-Event Systems Using System Objects

9-14

• “Custom Entity Types, Ports, and Storage” on page 9-24
• “Work with Events” on page 9-27

 See Also

9-15

Implement a Discrete-Event System Object
The matlab.DiscreteEventSystem provides methods that let you work with these
elements of a discrete-event system:

• Static properties of the object entity types, ports, and storage

• getEntityPortsImpl
• getEntityStorageImpl
• getEntityTypesImpl

• Event initialization

• setupEvents
• Runtime behavior of the object

• blocked
• destroy
• entry
• exit
• generate
• iterate
• timer

While implementing these methods, define entity type, entity storage, create, schedule,
and cancel events. Use these functions:

• Define entity storage

• queueFIFO
• queueLIFO
• queuePriority

• Create and schedule events

• eventGenerate
• eventIterate
• eventTimer

9 Build Discrete-Event Systems Using System Objects

9-16

• eventForward
• eventDestroy

• Cancel events

• cancelGenerate
• cancelIterate
• cancelTimer
• cancelForward
• cancelDestroy

• Define entity type

• entityType

Additional Notes

When referencing entity attributes or system properties in discrete-event System objects,
use these formats:
Attribute or
Property

Format Access

attribute entity.data.attribute_name Read/write
priority property entity.sys.priority Read/write
ID property entity.sys.id Read-only

See Also
matlab.DiscreteEventSystem | matlab.DiscreteEventSystem.blockedImpl |
matlab.DiscreteEventSystem.cancelDestroy |
matlab.DiscreteEventSystem.cancelForward |
matlab.DiscreteEventSystem.cancelGenerate |
matlab.DiscreteEventSystem.cancelIterate |
matlab.DiscreteEventSystem.cancelTimer |
matlab.DiscreteEventSystem.destroy |
matlab.DiscreteEventSystem.entityType |
matlab.DiscreteEventSystem.entry |
matlab.DiscreteEventSystem.eventDestroy |

 See Also

9-17

matlab.DiscreteEventSystem.eventForward |
matlab.DiscreteEventSystem.eventGenerate |
matlab.DiscreteEventSystem.eventIterate |
matlab.DiscreteEventSystem.eventTimer |
matlab.DiscreteEventSystem.exit | matlab.DiscreteEventSystem.generate
| matlab.DiscreteEventSystem.getEntityPortsImpl |
matlab.DiscreteEventSystem.getEntityStorageImpl |
matlab.DiscreteEventSystem.getEntityTypesImpl |
matlab.DiscreteEventSystem.iterate |
matlab.DiscreteEventSystem.queueFIFO |
matlab.DiscreteEventSystem.queueLIFO |
matlab.DiscreteEventSystem.queuePriority |
matlab.DiscreteEventSystem.queueSysPriority |
matlab.DiscreteEventSystem.setupEvents |
matlab.DiscreteEventSystem.timer | matlab.System

Related Examples
• “Use a MATLAB Discrete-Event System Block” on page 9-14

More About
• “System Object Integration” (Simulink)
• “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2
• “Custom Entity Types, Ports, and Storage” on page 9-24
• “Work with Events” on page 9-27

9 Build Discrete-Event Systems Using System Objects

9-18

Generate Code for MATLAB Discrete-Event System Blocks
To improve simulation performance, you can configure the MATLAB Discrete-Event
System to simulate using generated code. With the Simulate using parameter set to
Code generation option, the block simulates and generates code using only MATLAB
functions supported for code generation.

MATLAB Discrete-Event System blocks support code reuse for models that have multiple
MATLAB Discrete-Event System blocks using the same System object source file. Code
reuse enables the code to be generated only once for the blocks sharing the System object.

Migrate Existing MATLAB Discrete-Event System System objects

Starting in R2017b, the MATLAB Discrete-Event System block can simulate using
generated code. Existing applications continue to work with the Simulate using
parameter set to Interpreted execution.

If you want to generate code for the block using MATLAB discrete-event system
acceleration, update the System object code using these guidelines. For an example of
updated MATLAB Discrete-Event System System object, see the
seExampleSchedulerClass file in the Develop Custom Scheduler of a Multicore Control
System example.

Replace Renamed matlab.DiscreteEventSystem Methods

To take advantage of simulation with code generation for the
matlab.DiscreteEventSystem class:

1 In the matlab.DiscreteEventSystem application file, change these method
names to the new names:
Old Method Name New Method Name
blockedImpl blocked
destroyImpl destroy
entryImpl entry
exitImpl exit
generateImpl generate
iterateImpl iterate

 Generate Code for MATLAB Discrete-Event System Blocks

9-19

matlab:edit('seExampleSchedulerClass')
matlab:showdemo('seExampleSchedulerCustom')
matlab:showdemo('seExampleSchedulerCustom')

Old Method Name New Method Name
setupEventsImpl setupEvents
timerImpl timer

2 In the code, move the renamed method definitions from a protected area to a public
area for each matlab.DiscreteEventSystem method.

Initialize System Properties

Initialize System object properties in the properties section. Do not initialize them in the
constructor or other methods. In other words, you cannot use variable-size for System
object properties.

Initialize Empty Arrays of Events

Use the matlab.DiscreteEventSystem.initEventArray to initialize arrays.
Before After
 function events = setupEventsImpl(obj) function events = setupEvents(obj)

 events = obj.initEventArray;

Append Elements to Array of Structures

Append elements to array of structures. For example:
Before After
 events(id) = obj.eventGenerate(1, num2str(id), ...
0, obj.Priorities(id)); %#ok<*AGROW>

events = [events obj.eventGenerate(1, int2str(id),...
 0, obj.Priorities(id))]; %#ok<AGROW>

Replace Functions That Do Not Support Code Generation

Replace functions that do not support code generation with functional equivalents that
support code generation. For example:
Before After
 events(id) = obj.eventGenerate(1, num2str(id), ...
0, obj.Priorities(id)); %#ok<*AGROW>

events = [events obj.eventGenerate(1, int2str(id),...
 0, obj.Priorities(id))]; %#ok<AGROW>

Declare Functions That Do Not Support Code Generation

For functions that do not support code generation and that do not have functional
equivalents, use the coder.extrinsic function to declare those functions as extrinsic.

9 Build Discrete-Event Systems Using System Objects

9-20

For example, str2double does not have a functional equivalent. Before calling the
coder.extrinsic, make the returned variable the same data type as the function you
are identifying. For example:
Before After
id = str2double(tag); coder.extrinsic('str2double');

id = 1;
id = str2double(tag);

• Do not pass System objects to functions that are declared as extrinsic.
• Declare only static System object methods as extrinsic.

Replace Cell Arrays

Replace cell arrays with matrices or arrays of structures.
Before After
 entity.data.execTime = obj.ExecTimes{id}(1);entity.data.execTime = obj.ExecTimes(id, 1);

Change Flags to Logical Values

Change flags from values such as 1 and 0 to logical values, such as true and false.

Manage Global Data

Manage global data while simulating with code generation using one of these:

• evalin and assignin functions in the MATLAB workspace
• “Static Data Object” (MATLAB)

Move Logging and Graphical Functions

Many MATLAB logging and graphical functions do not support code generation. You can
move logging and graphical functions into:

• A new matlab.DiscreteEventSystem object and configure the associated MATLAB
Discrete-Event System block to simulate using Interpreted execution mode.

• An existing simevents.SimulationObserver object

Limitations of Code Generation with Discrete-Event System Block
Limitations include:

 Generate Code for MATLAB Discrete-Event System Blocks

9-21

• No “Global Variables” (MATLAB)
• “System Objects in MATLAB Code Generation” (Simulink)
• “MATLAB System Block Limitations” (Simulink)

See Also
matlab.DiscreteEventSystem | matlab.DiscreteEventSystem.blockedImpl |
matlab.DiscreteEventSystem.cancelDestroy |
matlab.DiscreteEventSystem.cancelForward |
matlab.DiscreteEventSystem.cancelGenerate |
matlab.DiscreteEventSystem.cancelIterate |
matlab.DiscreteEventSystem.cancelTimer |
matlab.DiscreteEventSystem.destroy |
matlab.DiscreteEventSystem.entityType |
matlab.DiscreteEventSystem.entry |
matlab.DiscreteEventSystem.eventDestroy |
matlab.DiscreteEventSystem.eventForward |
matlab.DiscreteEventSystem.eventGenerate |
matlab.DiscreteEventSystem.eventIterate |
matlab.DiscreteEventSystem.eventTimer |
matlab.DiscreteEventSystem.exit | matlab.DiscreteEventSystem.generate
| matlab.DiscreteEventSystem.getEntityPortsImpl |
matlab.DiscreteEventSystem.getEntityStorageImpl |
matlab.DiscreteEventSystem.getEntityTypesImpl |
matlab.DiscreteEventSystem.iterate |
matlab.DiscreteEventSystem.queueFIFO |
matlab.DiscreteEventSystem.queueLIFO |
matlab.DiscreteEventSystem.queuePriority |
matlab.DiscreteEventSystem.queueSysPriority |
matlab.DiscreteEventSystem.setupEvents |
matlab.DiscreteEventSystem.timer | matlab.System

More About
• “System Object Integration” (Simulink)
• “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2

9 Build Discrete-Event Systems Using System Objects

9-22

• “Implement a Discrete-Event System Object” on page 9-16

 See Also

9-23

Custom Entity Types, Ports, and Storage
In this section...
“Entity Types” on page 9-24
“Custom Entity Ports” on page 9-25
“Custom Entity Storage” on page 9-25

Entity Types

In a discrete-event system, an entity type defines a class of entities that share a common
set of data specifications and run-time methods. Examples of data specifications include
dimensions, data type, and complexity. Consider these guidelines when defining custom
entity types using the getEntityTypesImpl method:

• You can specify multiple entity types in one discrete-event system. Each type must
have a unique name.

• An entity storage element, input port, and output port must specify the entity type it
works with.

• Specify or resolve common data specifications for an entity type. For example, an
input port and an output port with the same entity type must have the same data
type.

• When forwarding an entity, the data specifications of source and destination must be
same in these instances:

• From input port to storage
• Between storage elements
• From a storage element to output port

For a discrete-event system with multiple entity types, each entity type shares a common
set of event action methods. When naming these methods, use this convention:

entitytypeActionImpl

For example, if your discrete-event system has two entity types, car and truck, use
method names such as:

carEntryImpl
trucEntryImpl

9 Build Discrete-Event Systems Using System Objects

9-24

For discrete-event systems with one entity type, you can still use this convention, or use
the convention actionImpl, such as

entryImpl

Custom Entity Ports

A MATLAB discrete-event system supports variable number of input and output ports
using the getNumInputsImpl and getNumOutputsImpl methods. You can also specify
which ports are entity ports and the entity types for these ports. Use the
getEntityPortsImpl method to specify these port properties.

Custom Entity Storage

A MATLAB discrete-event system can contain multiple entity storage elements. Use the
getEntityStorageImpl method to specify storage elements. An entity storage is a
random-access container with these properties:

• Entity type — Entity type this storage is handling.
• Capacity — Maximum number of entities that the storage can contain.
• Storage type — Criteria to sort storage entities (FIFO, LIFO, and priority).
• Key name — An attribute name used as key name for sorting. This property is

applicable only when the storage type is priority.
• Sorting direction — Ascending or descending priority queues. This property is

applicable only when the storage type is priority.

See Also
matlab.DiscreteEventSystem |
matlab.DiscreteEventSystem.getEntityPortsImpl |
matlab.DiscreteEventSystem.getEntityStorageImpl |
matlab.DiscreteEventSystem.getEntityTypesImpl |
matlab.DiscreteEventSystem.queueFIFO |
matlab.DiscreteEventSystem.queueLIFO |
matlab.DiscreteEventSystem.queuePriority |
matlab.DiscreteEventSystem.queueSysPriority | matlab.System

 See Also

9-25

Related Examples
• “Use a MATLAB Discrete-Event System Block” on page 9-14

More About
• “System Object Integration” (Simulink)
• “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2
• “Implement a Discrete-Event System Object” on page 9-16
• “Work with Events” on page 9-27

9 Build Discrete-Event Systems Using System Objects

9-26

Work with Events

In this section...
“Event Types” on page 9-27
“Event Actions” on page 9-28
“Initialization Events” on page 9-29
“Cancellation of Previously Scheduled Events” on page 9-29
“Additional Notes” on page 9-29

Event Types

A MATLAB discrete-event system can have the following types of events:

• Storage events — Schedule these events on a storage element. The actor is a storage
element.

• Generate

Create a new entity inside a storage element.
• Iterate

Iterate and process each entity of a storage element.
• Entity events — Schedule these events on an entity. Actor is an entity.

• Timer

Delay an entity.
• Forward

Move an entity from its current storage to another storage or output port.
• Destroy

Destroy the existing entity of a storage element.

You can:

• Schedule events

 Work with Events

9-27

• Define event actions in response to events
• Initialize events
• Cancel events

Event Actions

When an event occurs, a discrete-event system responds to it by invoking a
corresponding action. Implement these actions as System object methods. This table lists
each action method and the triggering event.
Action Triggering Event Description
generate Generate Called after a new entity is created inside a

storage element.
iterate Iterate Upon execution of an iterate event, the

discrete-event system calls this method for
each entity, starting from the front of the
storage, to the back. You can stop the
iteration before reaching the last entity. If
the entity order must change, the order
changes after the entire iteration completes.

timer Timer Called when a timer of an entity expires
(completes).

entry Forward When an entity is forwarded from storage A
to storage B, the discrete-event system first
calls exit of A, then entry of B.

exit Forward When an entity is forwarded from storage A
to storage B, the discrete-event system first
calls exit of A, then entry of B.

blocked Forward Upon execution of a forward event, if entity
cannot leave due to blocking, the discrete-
event system calls the blocked action
method.

destroy Destroy The discrete-event system calls this method
before an existing entity is destroyed and
removed from storage.

9 Build Discrete-Event Systems Using System Objects

9-28

Initialization Events

Use the setupEvents method to schedule initial events of a discrete-event system. You
can schedule only storage events using this method. This method does not have a specific
entity type name.

Cancellation of Previously Scheduled Events

Use the cancel* methods to cancel previously scheduled events of a discrete-event
system.

Additional Notes
• Forward events

If a forward event fails because of blocking, the forward event remains active. When
space becomes available, the discrete-event system reschedules the forward event for
immediate execution

• Tagging events

You can schedule multiple events of the same type for the same actor. When using
multiple events of the same type, use tags to distinguish between the events. For
example, an entity can have multiple timers with distinct tags. When one timer
expires, you can use the tag argument of the timer method to differentiate which
timer it is.

If you schedule two events with the same tag on the same actor, the later event
replaces the first event. If you schedule two events with different tags, the discrete-
event system calls them separately.

See Also
matlab.DiscreteEventSystem | matlab.DiscreteEventSystem.blocked |
matlab.DiscreteEventSystem.cancelDestroy |
matlab.DiscreteEventSystem.cancelForward |
matlab.DiscreteEventSystem.cancelGenerate |
matlab.DiscreteEventSystem.cancelIterate |
matlab.DiscreteEventSystem.cancelTimer |

 See Also

9-29

matlab.DiscreteEventSystem.destroy | matlab.DiscreteEventSystem.entry
| matlab.DiscreteEventSystem.eventDestroy |
matlab.DiscreteEventSystem.eventForward |
matlab.DiscreteEventSystem.eventGenerate |
matlab.DiscreteEventSystem.eventIterate |
matlab.DiscreteEventSystem.eventTimer |
matlab.DiscreteEventSystem.exitImpl |
matlab.DiscreteEventSystem.generate |
matlab.DiscreteEventSystem.iterate |
matlab.DiscreteEventSystem.setupEvents |
matlab.DiscreteEventSystem.timer | matlab.System

Related Examples
• “Use a MATLAB Discrete-Event System Block” on page 9-14

More About
• “System Object Integration” (Simulink)
• “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2
• “Implement a Discrete-Event System Object” on page 9-16
• “Custom Entity Types, Ports, and Storage” on page 9-24

9 Build Discrete-Event Systems Using System Objects

9-30

Custom Visualization

• “Interface for Custom Visualization” on page 10-2
• “Create an Application” on page 10-4
• “Use the Observer to Monitor the Model” on page 10-7
• “Stop Simulation and Disconnect the Model” on page 10-8
• “Custom Visualization Examples” on page 10-9

10

Interface for Custom Visualization
In this section...
“SimulationObserver Class” on page 10-2
“Custom Visualization Workflow” on page 10-2

SimulationObserver Class
To create an observer, create a class that derives from the
simevents.SimulationObserver object. You can use observers to implement
animators to visualize model simulation, or debuggers.

• To help understand queue impact, visualize entities moving through the model during
simulation,

• Develop presentation tools showing model simulation via an application-oriented
interface, such as restaurant queue activity.

• Debug and examine entity activity.
• Examine queue contents.

The simevents.SimulationObserver object provides methods that let you:

• Create observer or animation objects.
• Identify model blocks for notification of run-time events.
• Interact with the event calendar.
• Perform activities when a model pauses, continues after pausing, and terminates.

SimEvents models call these functions during model simulation.

Custom Visualization Workflow
1 Create an application file.

a Define a class that inherits from the simevents.SimulationObserver class.
b Create an observer object that derives from this class.
c From the simevents.SimulationObserver methods, implement the

functions you want for your application. This application comprises your
observer.

10 Custom Visualization

10-2

2 Open the model.
3 Create an instance of your class.
4 Run the model.

See Also
simevents.SimulationObserver

Related Examples
• “Create an Application” on page 10-4
• “Use the Observer to Monitor the Model” on page 10-7
• “Stop Simulation and Disconnect the Model” on page 10-8
• “Custom Visualization Examples” on page 10-9

 See Also

10-3

Create an Application
You can use these methods in your derived class implementation of
simevents.SimulationObserver.
Action Method
Specify behavior when simulation
starts.

simStarted

Specify behavior when simulation
pauses.

simPaused

Specify behavior when simulation
resumes.

simResumed

Define observer behavior when
simulation is terminating.

simTerminating

Specify list of blocks to be notified
of entity entry and exit events.

getBlocksToNotify

Specify whether you want
notification for all events in the
event calendar.

notifyEventCalendarEvents

Specify behavior after an entity
enters a block that has entity
storage.

postEntry

Specify behavior before an entity
exits a block with entity storage.

preExit

Specify behavior before execution
of an event.

preExecute

Add block to list of blocks to be
notified.

addBlockNotification

Remove block from list of blocks
being notified.

removeBlockNotification

Get handles to event calendars. getEventCalendars
Get list of blocks that store
entities.

getAllBlockWithStorages

Return block handle for a given
block path.

getHandleToBlock

10 Custom Visualization

10-4

Action Method
Return storage handles of
specified block.

getHandlesToBlockStorages

1 In the MATLAB Command Window, select New > Class.
2 In the first line of the file, inherit from the simevents.SimulationObserver

class. For example:

classdef seExampleRestaurantAnimator < simevents.SimulationObserver

seExampleRestaurantAnimator is the name of the new observer object.
3 In the properties section, enter the properties for your application.
4 In the methods section, implement the functions for your application.
5 To construct the observer object, enter a line like the following in the methods

section of the file:

function this = seExampleRestaurantAnimator
 % Constructor
 modelname = 'seExampleCustomVisualization';
 this@simevents.SimulationObserver(modelname);
 this.mModel = modelname;
 end

The matlabroot\toolbox\simevents\examples folder contains this application
example, seExampleRestaurantAnimator.m. This example uses an observer object to
implement an animator for the seExampleCustomVisualization model.

For more information, see Using Custom Visualization for Entities in the SimEvents
Examples tab.

See Also
simevents.SimulationObserver

Related Examples
• “Use the Observer to Monitor the Model” on page 10-7
• “Stop Simulation and Disconnect the Model” on page 10-8

 See Also

10-5

matlab:open_system('seExampleCustomVisualization')

• “Custom Visualization Examples” on page 10-9

More About
• “Interface for Custom Visualization” on page 10-2

10 Custom Visualization

10-6

Use the Observer to Monitor the Model
1 Open the model to observe.
2 At the MATLAB command prompt, to enable the animator for the model:

>> obj=seExampleRestaurantAnimator;
3 Simulate the model.

When the model starts, the animator is displayed in a figure window. As the model
runs, it makes calls into your application to see if you have implemented one of the
predefined set of functions. If your model does not contain a SimEvents block, you
receive an error.

Note As a result of the instrumentation to visualize the simulation, the simulation is
slower than without the instrumentation.

See Also
simevents.SimulationObserver

Related Examples
• “Create an Application” on page 10-4
• “Stop Simulation and Disconnect the Model” on page 10-8
• “Custom Visualization Examples” on page 10-9

More About
• “Interface for Custom Visualization” on page 10-2

 Use the Observer to Monitor the Model

10-7

Stop Simulation and Disconnect the Model
1 Stop the simulation.
2 At the MATLAB command prompt, clear the animator from the model. For example:

clear obj;

See Also
simevents.SimulationObserver

Related Examples
• “Create an Application” on page 10-4
• “Use the Observer to Monitor the Model” on page 10-7
• “Custom Visualization Examples” on page 10-9

More About
• “Interface for Custom Visualization” on page 10-2

10 Custom Visualization

10-8

Custom Visualization Examples

In this section...
“Structure of Example Model” on page 10-9
“Visualize Entities” on page 10-9

The Using Custom Visualization for Entities example visualizes a restaurant
layout with customer entities entering, dining, and leaving. It uses
seExampleCustomVisualization to model a restaurant. To observe the visualization,
start the model and the animator.

Structure of Example Model

The seExampleCustomVisualization model has these major components:

• The Entity Generator block (Patron Enter) generates entities representing customer
entities. Each customer has a TimeToDine amount of time to dine.

• These customer entities enter a waiting area, where a Resource Acquirer block
acquires a table for the customer.

• The Resource Pool block contains 10 table resources.
• When a table entity is available for a waiting customer entity, the Entity Server block

serves the customer for a TimeToDine amount of time.
• When a customer entity is done dining, the Resource Releaser block releases the table

resource back to the resource pool.
• The customer entity leaves the restaurant through the Entity Terminator block

(Patron Leave).

Visualize Entities

The seExampleRestaurantAnimator application animates the diners entering, dining,
and leaving the restaurant. The animator application draws a different colored dot for
each customer. As customers move through the restaurant, the application animates the
motion of the dots.

 Custom Visualization Examples

10-9

matlab:open_system('seExampleCustomVisualization')

See Also
simevents.SimulationObserver

Related Examples
• “Create an Application” on page 10-4
• “Use the Observer to Monitor the Model” on page 10-7
• “Stop Simulation and Disconnect the Model” on page 10-8

More About
• “Interface for Custom Visualization” on page 10-2

10 Custom Visualization

10-10

Migrating SimEvents Models

11

Migration Considerations
To take advantage of SimEvents features, migrate legacy SimEvents models (pre-
R2016a). Benefits include:

Event actions MATLAB Discrete-Event
System block

Discrete-Event Chart block

Entity multicast Domain transitions Simulink integration

Unified entity type Entity Batch Creator and
Splitter blocks

Sequence Viewer

Use SimEvents software to:

• Modify entity attributes, service, and routes on events such as entity generation,
entry, and exit.

• Create custom SimEvents blocks using MATLAB.
• Create Stateflow state transition diagrams that process entities, react to entity

events, and follow precise timing for temporal operations.

11 Migrating SimEvents Models

11-2

• Wirelessly broadcast copies of entities to multiple receive queues.
• Automatically switch between time-based and event-based signals.
• Use Simulink features, such as Fast Restart to speed up simulation runs and

Simulation Stepper to debug.
• Define entity types that are consistent across Simulink, Stateflow, and SimEvents

products.
• Create and split batch of entities.
• Display interchange of messages and entities.

When You Should Not Migrate

If your legacy model contains timeout blocks, do not migrate the model. You can still
access legacy blocks to continue developing older models by using the blocks in the
Legacy Block Library.

See Also

More About
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-7
• “Replace Old Blocks” on page 11-9
• “Connect Signal Ports” on page 11-13
• “Write Event Actions” on page 11-19
• “Observe Output” on page 11-31
• “Reactive Ports” on page 11-33

 See Also

11-3

matlab:simeventslib

Migration Workflow
This migration workflow helps you migrate legacy SimEvents models to R2016a or later.
In this workflow, you create a new SimEvents model to replace your legacy SimEvents
model. This is an iterative workflow that requires you to repeat some steps.

1 Before you start, copy your legacy model to a backup folder. Run the old model and
collect the results using the Simulation Data Inspector (“Simulation Data Inspector
in Your Workflow” (Simulink)).

11 Migrating SimEvents Models

11-4

Note Pre-R2016a SimEvents blocks cannot coexist in a model with post-R2016a
SimEvents blocks.

2 Identify and redefine entity types (“Identify and Redefine Entity Types” on page 11-
7)

3 When possible, replace old blocks with new blocks (“Replace Old Blocks” on page 11-
9) and reconfigure the new blocks.

4 Write event actions for these instances:

a Replace Set Attribute blocks with event actions in other blocks (“Replace Set
Attribute Blocks with Event Actions” on page 11-19)

b Replace Get Attribute blocks with event actions in other blocks (“Connect Signal
Ports” on page 11-13)

c Replace Attribute Function blocks with event actions in other blocks (“Replace
Attribute Function Blocks with Event Actions” on page 11-26)

d Replace random number generators with event actions in other blocks
(“Generate Random Numbers with Event Actions” on page 11-21)

5 Replace reactive ports (see “If Connected to Reactive Ports” on page 11-16).
6 Determine a strategy to observe output by replacing Discrete Event Signal to

Workspace blocks with To Workspace blocks or logging (“Observe Output” on page
11-31).

7 Verify the results by running the simulation and using Simulation Data Inspector to
compare these results with those you collect in step 1.

See Also

More About
• “Migration Considerations” on page 11-2
• “Identify and Redefine Entity Types” on page 11-7
• “Replace Old Blocks” on page 11-9
• “Connect Signal Ports” on page 11-13
• “Write Event Actions” on page 11-19
• “Observe Output” on page 11-31

 See Also

11-5

• “Reactive Ports” on page 11-33

11 Migrating SimEvents Models

11-6

Identify and Redefine Entity Types
Identify entity types in the legacy model and redefine them in the new model.

1 In the old model, identify all Entity Generator blocks that feed each Entity Sink
block.

2 In the model, from the Display menu, select Signals & Ports > Port Data Types.
3 To see the attributes at each Entity Generator, Entity Sink, or other termination

points of entity flow, hover over the entity label to display attribute associated with
the entity. A popup window displays the attributes associated with the port.

Repeat this step for each block and note the attributes.
4 In the new model, add Entity Generator blocks to replace those in the legacy model.
5 In the model, in the Entity Generator block Entity type tab, define the entity type

for each block with the full list of attributes for that block (found in step 3).

This example shows the redefined attributes,

Once you define the entity types, return to “Migration Workflow” on page 11-4.

 Identify and Redefine Entity Types

11-7

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Replace Old Blocks” on page 11-9
• “Connect Signal Ports” on page 11-13
• “Write Event Actions” on page 11-19
• “Observe Output” on page 11-31
• “Reactive Ports” on page 11-33

11 Migrating SimEvents Models

11-8

Replace Old Blocks
The primary goal in migration is to replace legacy SimEvents behavior with new
SimEvents behavior.

This table lists:

• New SimEvents blocks to replace legacy SimEvents blocks
• Actions to take when there is no equivalent new SimEvents block to replace the

legacy block. Some of these actions are also part of the migration workflow.

Old Block Action for New SimEvents Model
Attribute Function Wait until “Replace Attribute Function Blocks with Event

Actions” on page 11-26.
Attribute Scope Wait until “If Using Get Attribute Blocks to Observe Output”

on page 11-13.
Cancel Timeout Consider not yet migrating your model.
Conn Simulink Inport or Outport block.
Discrete Event Signal to
Workspace

Wait until “Observe Output” on page 11-31.

Enabled Gate Replace with Entity Gate.
Entity Combiner Replace with Composite Entity Creator.
Entity Departure
Counter

Wait until “Write Event Actions” on page 11-19.

Entity Departure
Function-Call Generator

Wait until “Write Event Actions” on page 11-19.

Entity Sink Replace with Entity Terminator.
Entity Splitter Replace with Composite Entity Splitter.
Entity Departure
Function-Call Generator

Wait until “Write Event Actions” on page 11-19.

Event Filter Delete (block no longer needed).
Event to Timed Function-
Call

Delete (block no longer needed).

Event to Timed Signal Delete (block no longer needed).

 Replace Old Blocks

11-9

Old Block Action for New SimEvents Model
Event-Based Entity
Generator

Replace with Entity Generator.

Event-Based Random
Number

Wait until “Generate Random Numbers with Event Actions”
on page 11-21.

Event-Based Sequence Wait until “Write Event Actions” on page 11-19.
FIFO Queue Replace with Entity Queue.
Get Attribute Wait until “Connect Signal Ports” on page 11-13.
Infinite Server Replace with Entity Server.
Initial Value Delete (block no longer needed).
Input Switch Replace with Entity Input Switch.
Instantaneous Entity
Counting Scope

Wait until “If Using Get Attribute Blocks to Observe Output”
on page 11-13.

Instantaneous Event
Counting Scope

Delete (block no longer needed).

LIFO Queue Replace with Entity Queue.
N-Server Replace with Entity Server.
Output Switch Replace with Entity Output Switch.
Path Combiner Input Switch (with All selected).
Priority Queue Replace with Entity Queue.
Read Timer For an example, see “Measure Point-to-Point Delays” on page

1-41.
Release Gate Replace with Entity Gate.
Replicate Replace with Entity Replicator.
Resource Acquire Replace with Resource Acquire.
Resource Pool Replace with Resource Pool.
Resource Release Replace with Resource Releaser.
Schedule Timeout Consider not yet migrating your model.
Set Attribute Wait until “Replace Set Attribute Blocks with Event Actions”

on page 11-19.

11 Migrating SimEvents Models

11-10

Old Block Action for New SimEvents Model
Signal Latch Delete (block no longer needed).
Signal Scope Replace with Simulink Scope.
Signal-Based Function-
Call Event Generator

Wait until “If Connected to Reactive Ports” on page 11-16.

Signal-Based Function-
Call Generator

Wait until “If Connected to Reactive Ports” on page 11-16.

Single Server Replace with Entity Server.
Start Timer For an example, see “Measure Point-to-Point Delays” on page

1-41.
Time-Based Entity
Generator

Replace with Entity Generator.

Time-Based function-Call
Generator

Replace with Entity Generator.

Timed to Event Function-
Call

Delete (block no longer needed).

Timed to Event Signal Delete (block no longer needed).
X-Y Attribute Scope See “If Connected to Computation Blocks” on page 11-14.
X-Y Signal Scope Simulink XY Graph.

When done, return to “Migration Workflow” on page 11-4.

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-7
• “Connect Signal Ports” on page 11-13
• “Write Event Actions” on page 11-19
• “Observe Output” on page 11-31

 See Also

11-11

• “Reactive Ports” on page 11-33

11 Migrating SimEvents Models

11-12

Connect Signal Ports
Previous releases use Get Attribute blocks to output the values of entity attributes.
SimEvents 5.0 is more closely tied to Simulink. This close association lets you use
traditional Simulink tools to get attribute values. Replace Get Attribute blocks using
these guidelines.

In this section...
“If Connected to Gateway Blocks” on page 11-13
“If Using Get Attribute Blocks to Observe Output” on page 11-13
“If Connected to Computation Blocks” on page 11-14
“If Connected to Reactive Ports” on page 11-16

If Connected to Gateway Blocks

SimEvents models no longer require gateway blocks. Remove all gateway blocks, as
shown in the figure:

Return to “Connect Signal Ports” on page 11-13.

If Using Get Attribute Blocks to Observe Output

If you use Get Attribute blocks to observe output, see “Observe Output” on page 11-31.
For example, you can use the Simulation Data Inspector to visualize entities from an
Entity Generator block. This example shows how to visualize entities using the
Simulation Data Inspector, logging, and a scope.

 Connect Signal Ports

11-13

Return to “Connect Signal Ports” on page 11-13.

If Connected to Computation Blocks

If the Get Attribute block is connected to computational blocks, reproduce the behavior of
these blocks with Simulink Function blocks.

1 Place the computation blocks in a Simulink Function block.
2 Call the Simulink Function block from an event action.

This example places the Gain and Bias blocks in the Simulink Function block.

11 Migrating SimEvents Models

11-14

This table shows how each statistics port gets updated.
Statistics Port Updated on Event

Entry Exit Blocked Preempted
Number of entities
departed, d

Number of entities
in block, n

Number of entities
arrived, a

Pending entity
present in block,
pe

 Connect Signal Ports

11-15

Statistics Port Updated on Event
Entry Exit Blocked Preempted

Number of
pending entities,
np

Number of entities
preempted, p

Average
intergeneration
time, w

Average wait, w

Average queue
length, l

Utilization, util

Return to “Connect Signal Ports” on page 11-13.

If Connected to Reactive Ports

In previous releases, reactive ports are signal input ports that listen for updates or
changes in the input signal. When the input signal changes, an appropriate reaction
occurs in the block possessing the port. Convert all reactive port event signals to
messages, as in this example.

11 Migrating SimEvents Models

11-16

For more information, see “Reactive Ports” on page 11-33.

Return to “Connect Signal Ports” on page 11-13.

 Connect Signal Ports

11-17

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-7
• “Replace Old Blocks” on page 11-9
• “Write Event Actions” on page 11-19
• “Observe Output” on page 11-31
• “Reactive Ports” on page 11-33

11 Migrating SimEvents Models

11-18

Write Event Actions
When migrating legacy SimEvents models, you often must create event actions in these
instances:

• Setting attribute values
• Getting attribute values
• Generating random number generation
• Using Event sequences
• Replacing Attribute Function blocks
• Using Simulink signals in an event-based computation

Replace Set Attribute Blocks with Event Actions

Use these guidelines to replace Set Attribute blocks:

• If the Set Attribute blocks immediately follow entity generator blocks to initialize
attributes, in the Entity Generator block, code the Generate action on the Event
actions tab to set the attribute initial value. For example:

entitySys.id=5;
• If the Set Attribute blocks change attributes, in the Entity Generator block, code the

Create action on the Event actions tab.

This example illustrates the Generation action to initialize the attribute values:

 Write Event Actions

11-19

Return to “Migration Workflow” on page 11-4.

Get Attribute Values
If you write event actions to get attribute values, use a Simulink Function block:

1 Place the computation block in a Simulink Function block.
2 Pass the attribute value as an argument from the event action to the Simulink

Function block.

11 Migrating SimEvents Models

11-20

Generate Random Numbers with Event Actions

You can generate random numbers using:

• “Random Number Distribution” on page 11-21
• “Seeds for Random Number Generation” on page 11-23
• “Example of Arbitrary Discrete Distribution Replacement” on page 11-24

Random Number Distribution

Replace Event-Based Random Number block random number distribution modes with
equivalent MATLAB code in event actions.

To reproduce these distributions in a SimEvents model, use code like those in the Usage
column of this table in event actions or intergeneration time actions in the Entity
Generator block.

Distribution Parameters Usage Requires
Statistics and
Machine
Learning
Toolbox Product

Exponential Mean (m) -m * log(1-rand) No
Uniform Minimum (m)

Maximum (M)

m + (M-m) * rand No

Bernoulli Probability for
output to be 1 (P)

binornd(1,P) Yes

Binomial Probability of
success in a single
trial (P)

Number of trials (N)

binornd(N,P) Yes

Triangular Minimum (m)

Maximum (M)

Mode (mode)

persistent pd
if isempty(pd)
 pd = makedist('Triangular',...
 'a',m,'b',mode,'c',M)
end
random(pd)

Yes

 Write Event Actions

11-21

Distribution Parameters Usage Requires
Statistics and
Machine
Learning
Toolbox Product

Gamma Threshold (T)

Scale (a)

Shape (b)

gamrnd(b,a) Yes

Gaussian (normal) Mean (m)

Standard deviation
(d)

m + d*randn No

Geometric Probability of
success in a single
trial (P)

geornd(P) Yes

Poisson Mean (m) poissrnd(m) Yes
Lognormal Threshold (T)

Mu (mu)

Sigma (S)

T + lognrnd(mu,S) Yes

Log-logistic Threshold (T)

Scale (a)

persistent pd
if isempty(pd)
 pd = makedist('Loglogistic',...
 'mu',m,'sigma',S);
end
random(pd)

Yes

Beta Minimum (m)

Maximum (M)

Shape parameter a
(a)

Shape parameter b
(b)

betarnd(a,b) Yes

11 Migrating SimEvents Models

11-22

Distribution Parameters Usage Requires
Statistics and
Machine
Learning
Toolbox Product

Discrete uniform Minimum (m)

Maximum (M)

Number of values
(N)

persistent V P
if isempty(V)
 step = (M-m)/N;
 V = m : step : M;
 P = 0 : 1/N : N;
end
r = rand;
idx = find(r < P, 1);
V(idx)

No

Weibull Threshold (T)

Scale (a)

Shape (b)

T + wblrnd(a,b) Yes

Arbitrary
continuous

Value vector (V)

Cumulative
probability function
vector (P)

r = rand;
if r == 0
 val = V(1);
else
 idx = find(r < P,1);
 val = V(idx-1) + ...
 (V(idx)-V(idx-1))*(r-P(idx-1));
end

No

Arbitrary discrete Value vector (V)

Probability vector
(P)

r = rand;
idx = find(r < cumsum(P),1);
V(idx)

No

If you need additional random number distributions, see “Statistics and Machine
Learning Toolbox”.

Once you generate random numbers, return to “Migration Workflow” on page 11-4.

Seeds for Random Number Generation

To reset the initial seed value each time a simulation starts, use MATLAB code in event
actions, for example:

 Write Event Actions

11-23

persistent init
if isempty(init)
 rng(12234);
 init=true;
end

Example of Arbitrary Discrete Distribution Replacement

Here is an example of how to reproduce the arbitrary discrete distribution for the Event-
Based Random Number legacy block. Assume that the block has these parameter
settings:

• Distribution: Arbitrary discrete
• Value vector: [2 3 4 5 6]
• Probability vector: [0.3 0.3 0.1 0.2 0.1]
• Initial seed: 12234

As a general guideline:

1 Set the initial seed, for example:

persistent init
if isempty(init)
 rng(12234);
 init=true;
end

2 Determine what the value vector is assigned to in the legacy model and directly
assign it in the action code in the new model. In this example, the value vector is
assigned to the FinalStop.

3 To assign values within the appropriate range, calculate the cumulative probability
vector. For convenience, use the probability vector to calculate the cumulative
probably vector. For example, if the probability vector is:

[0.3 0.3 0.1 0.2 0.1]

The cumulative probability vector is:

[0.3 0.6 0.7 0.9 1]
4 Create a random variable to use in the code, for example:

x=rand();

11 Migrating SimEvents Models

11-24

Here is example code for this example block to calculate the distribution. The value
vector is assigned to FinalStop:

% Set initial seed.
persistent init
if isempty(init)
 rng(12234);
 init=true;
end
% Create random variable, x.
x=rand();
%
% Assign values within the appropriate range using the cumulative probability vector.
%
if x < 0.3
 entity.FinalStop=2;
elseif x >= 0.3 && x< 0.6
 entity.FinalStop=3;
elseif x >= 0.6 && x< 0.7
 entity.FinalStop=4;
elseif x >= 0.7 && x< 0.9
 entity.FinalStop=5;
else
 entity.FinalStop=6;
end

Once you generate random numbers, return to “Migration Workflow” on page 11-4.

Replace Event-Based Sequence Block with Event Actions

Replace Event-Based Sequence blocks, which generate a sequence of numbers from
specified column vectors, with event actions:

 Write Event Actions

11-25

Replace Attribute Function Blocks with Event Actions

Replace Attribute Function blocks, which manipulate attributes using MATLAB code,
with event actions:

1 Copy the Attribute Function code, without the function syntax, to the Event
actions tab in the relevant event action.

2 To refer to the entity attribute, use the format entity.Attribute1.

For short or simple code, use constructs like these:

11 Migrating SimEvents Models

11-26

 Write Event Actions

11-27

If you have longer or more complicated code, consider replacing the Attribute Function
block with a Simulink Function and copying the code without modification into the
Simulink Function block.

11 Migrating SimEvents Models

11-28

Return to “Migration Workflow” on page 11-4.

If Using Simulink Signals in an Event-Based Computation

If you are using Simulink signals in an event-based computation, send the signals to a
Simulink Function block.

1 Copy the event-based computation code to a Simulink Function block.
2 Send the Simulink signals as inputs to the Simulink Function block.

For example:

 Write Event Actions

11-29

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-7
• “Replace Old Blocks” on page 11-9
• “Connect Signal Ports” on page 11-13
• “Observe Output” on page 11-31
• “Reactive Ports” on page 11-33

11 Migrating SimEvents Models

11-30

Observe Output
Use these methods to observe output from your SimEvents model:
Items to Observe Visualization Tool
Statistics • Simulation Data Inspector

• Simulink To Workspace block
• Simulink Scope block
• Simulink Display block
• Simulink To File block
• Simulink Dashboard blocks

Entities passing through
model
Attributes

Count simultaneous
entities and messages

Simulation Data Inspector

Count simultaneous
events

Simulation Data Inspector — Each event is now a message
reactive port

Entities moving through
blocks in the model

Sequence Viewer

Entity animation Display > Message Animation
Step through Simulation Simulink Simulation Stepper
Custom animation SimEvents custom visualization API.

Return to “Migration Workflow” on page 11-4.

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-7
• “Replace Old Blocks” on page 11-9
• “Connect Signal Ports” on page 11-13
• “Write Event Actions” on page 11-19

 Observe Output

11-31

• “Reactive Ports” on page 11-33

11 Migrating SimEvents Models

11-32

Reactive Ports
In previous releases, reactive ports are signal input ports that listen for updates or
changes in the input signal. When the input signal changes, an appropriate reaction
occurs in the block possessing the port. Convert all reactive port event signals to
messages.

Here is an example of sending a message when data is less than or equal to 0.

Here is an example of sending messages on trigger edges (rising, falling, or either).

Here is an example of sending messages based on value changes (rising, falling, or
either).

 Reactive Ports

11-33

Here is a list of the reactive ports in SimEvents blocks and the action you can take for
them.

List of Reactive Ports

New Block with Reactive
Port

Reactive Port Behavior Action in New SimEvents Model

Entity Gate To open a gate on an
event

In enabled mode, send a message that carries a
positive value to the port on the Entity Gate
block.

In receive mode, send a message to advance one
entity for each message that arrives on the
control port.

Entity Input Switch

Entity Output Switch

Value change To select a new port, send a message to the
control port of the Entity Input Switch or Entity
Output Switch.

Entity Generator Message arrival Send a message to create an event-based entity.

Return to “Migration Workflow” on page 11-4

See Also

More About
• “Migration Considerations” on page 11-2

11 Migrating SimEvents Models

11-34

• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-7
• “Replace Old Blocks” on page 11-9
• “Connect Signal Ports” on page 11-13
• “Write Event Actions” on page 11-19
• “Observe Output” on page 11-31

 See Also

11-35

Troubleshoot SimEvents Models

• “Which Debugging Tool to Use” on page 12-2
• “Debug SimEvents Models” on page 12-3
• “Observe Entities with Animation” on page 12-13

12

Which Debugging Tool to Use
To decide which observation tool to use:
Items to Observe Visualization Tool
Statistics • SimEvents Debugger

• SimEvents Entity Inspector
• Simulation Data Inspector
• Simulink To Workspace block
• Simulink Scope block
• Simulink Display block
• Simulink To File block
• Simulink dashboard blocks

Entities passing through
model

Entity animation Display > Message Animation
Step through simulation • SimEvents Debugger

• Simulink Simulation Stepper
Custom animation Use SimEvents custom visualization API.

See Also
SimEvents Debugger

Related Examples
• “Debug SimEvents Models” on page 12-3

12 Troubleshoot SimEvents Models

12-2

Debug SimEvents Models
Use the SimEvents Debugger to inspect entities, set breakpoints based on entities
leaving or entering storage elements, step to events, and so forth. A breakpoint is a point
of interest in the simulation at which the debugger can suspend the simulation.

To enable debugging for a SimEvents model, add the SimEvents Debugger block to the
model. When you click Step Forward in the Simulink Editor, the SimEvents Debugger
displays.

The Explorer pane contains these nodes:

• Event calendar — Maintains a list of current and pending events for the model.
Select the Break before event execution check box to display event breakpoints on
the Breakpoints node.

• Breakpoints — Lists the breakpoints previously set for the model. You can view
breakpoints set for the block, on event calendar, and for watched entities.

• Storage — Displays the entity inspector listing all the storage blocks in the model
and check boxes that let you select breakpoints. Blocks that contain entities are
denoted with .

To set breakpoints for post entry and pre-exit of entities, select the PostEntry Break
and PreExit Break check boxes.

 Debug SimEvents Models

12-3

• Storage block — Displays the entity inspector listing the entities and attributes
associated with that block.

This topic uses the Tank Filling Station example to show the use of the debugger.
In this example, you step through the model simulation, set breakpoints, and explore the
event calendar,

The SimEvents software also provides an API to create your own visualization and
debugging tools. For more information, see “Interface for Custom Visualization” on page
10-2.

In this section...
“Start the Debugger” on page 12-4
“Step Through Model” on page 12-5

Start the Debugger

1 Start Tank Filling Station.
2 Into the Simulink editor, drag the SimEvents Debugger block into the top level of the

Tank Filling Station model.
3 To start the debugger, in the Simulink editor toolstrip, click the Step Forward

button.

The debugger displays in a paused state.
4

To step to the next event, click .

Note You can also click Continue () to have the debugger continue the
simulation. However, doing so without setting breakpoints causes the simulation to
complete and the debugger to close.

5 The debugger pauses at the next event and displays it in the event calendar. The
current event is highlighted in green.

12 Troubleshoot SimEvents Models

12-4

matlab:open_system('seExampleTankFilling')
matlab:open_system('seExampleTankFilling')

Step Through Model

This topic shows how to use the SimEvents Debugger by stepping you through a model.

1 To look at the current and scheduled events, click the Event calendar1 item. To set
breakpoints, you can select the Break before event execution. The debugger hits
the breakpoint before the next scheduled event. This breakpoint is for any event
type, including Forward, Generate, ServiceComplete, Gateway, Destroy, and Trigger.
Do not select this check box now.

 Debug SimEvents Models

12-5

2 To inspect the attributes of an entity, click the Fill This Tank storage element in
the Explorer pane.

12 Troubleshoot SimEvents Models

12-6

3 The Inspector pane shows a table with the entity sys.id. To track the entity as
the model simulates, click the associated check box.

4 To set breakpoints for when this entity enters and leaves the block, at the bottom of
the Inspector pane, select the two check boxes Break upon entity entry and
Break prior to entity exit.

Alternatively, to set the breakpoints on storage blocks all at once, click the Storage
item in the Explorer pane. Notice that the Fill This Tank block is highlighted
because it contains entities.

Select the PostEntry Break check boxes for the blocks you want in this table.
5

To progress to the next event, click .
6 Click Continue. Simulation continues until the next PostEntry or PreExit event.

 Debug SimEvents Models

12-7

The block associated with the breakpoint is highlighted.
7 Step to the next event.

12 Troubleshoot SimEvents Models

12-8

The next breakpoint at which the debugger stops is highlighted in the event
calendar.

8 Continue the simulation.

 Debug SimEvents Models

12-9

The simulation stops at the entity you opted to watch. As you continue the
simulation or step through the model, the debugger stops at the various breakpoints
and watchpoints that you set, letting you explore the model simulation.

9 To inspect the entities in a currently selected block in the model, select the block in
the model, then click the Inspect GCB button ().

The Inspector pane displays the current details of the entities in this block.

12 Troubleshoot SimEvents Models

12-10

You can continue to set entity watchpoints and event breakpoints.
10 To list select blocks, events, or entities, type their names in the search boxes at the

top of the Explorer or Inspector panes.

The SimEvents software also provides a programmatic interface that lets you create your
own simulation observer or debugger. For more information, see “Create Custom
Visualization”.

See Also
SimEvents Debugger

 See Also

12-11

More About
• “Which Debugging Tool to Use” on page 12-2
• “Create Custom Visualization”
• “Interface for Custom Visualization” on page 10-2

12 Troubleshoot SimEvents Models

12-12

Observe Entities with Animation
During simulation, animation provides visual verification that your model behaves as
you expect. Animation highlights active entities in a model as execution progresses. You
can control the speed of entity activity animation during simulation, or turn off
animation. In the Simulink editor, select Display > SimEvents Animation Menu, then
select one of the animation speeds.

 Observe Entities with Animation

12-13

See Also

More About
• “Which Debugging Tool to Use” on page 12-2
• “Visualize and Animate Simulations”

12 Troubleshoot SimEvents Models

12-14

